Courses Β» JSS1 Β» JSS1 Mathematics Β» Basic Operations of Algebraic Symbols and Terms - JSS1 Mathematics Lesson Note

Basic Operations of Algebraic Symbols and Terms - JSS1 Mathematics Lesson Note

Addition and Subtraction:

When adding or subtracting algebraic expressions, you combine like terms. Like terms have the same variable part raised to the same power. For example, 

3π‘₯ and 5π‘₯ are like terms, but 

3π‘₯ and 5π‘₯2 are not.

Examples:

3π‘₯+5π‘₯:

Both terms have π‘₯, so add the coefficients.

3π‘₯+5π‘₯=8π‘₯.

 

For 7π‘Ž2βˆ’3π‘Ž2:

Both terms have 

π‘Ž2, so subtract the coefficients.

7π‘Ž2βˆ’3π‘Ž2=4π‘Ž2.

 

2π‘₯+3π‘¦βˆ’π‘₯+5𝑦:

Combine like terms (π‘₯ terms together and 𝑦 terms together).

2π‘₯βˆ’π‘₯=π‘₯ and 3𝑦+5𝑦=8𝑦.

The result is π‘₯+8𝑦.

 

Multiplication:

When multiplying algebraic expressions, you multiply the coefficients and add the exponents of like bases.

Examples:

3π‘₯ x 2π‘₯:

Multiply the coefficients (3 and 2).

Add the exponents of 

π‘₯ (1 and 1).

3x2=6 and π‘₯1β‹…

The result is 

6π‘₯2.

(2π‘Ž)(βˆ’3𝑏):

Multiply the coefficients (2 and -3).

Since π‘Ž and 𝑏 are different variables, just multiply the variables.

2xβˆ’3=βˆ’6. The result is βˆ’6π‘Žπ‘.

 

Division:

When dividing algebraic expressions, you divide the coefficients and subtract the exponents of like bases.

Examples:

6π‘₯/3π‘₯:

Divide the coefficients (6 and 3).

Subtract the exponents of π‘₯ (3 and 1).

6/3=2 and π‘₯(3βˆ’1)=π‘₯2.

The result is 

2π‘₯.

 

8π‘Ž/2π‘Ž:

Divide the coefficients (8 and 2).

Subtract the exponents of π‘Ž (4 and 2).

8/2 = 4 and π‘Ž4βˆ’2=π‘Ž2.

The result is 

4π‘Ž2.

Recommended: Questions and Answers on Simplifying Algebraic Expressions: Basic Operations for JSS1 Mathematics
Please share this, thanks:

Add a Comment

Notice: Please post responsibly.

No responses