Courses » SS2 » SS2 Mathematics » Bearings - SS2 Mathematics Lesson Note

Bearings - SS2 Mathematics Lesson Note

Consider the two points \(N\ \)and\(\ P\) away from a point \(O\) on a map, \(N\) is north of \(O\) and the bearing of \(P\) from \(O\) is \(\angle NOP\).

Bearing is always measured clockwise from \(ON\).

In measuring bearing angles, there are usually two ways to do this:

  1. Using the cardinal point notation \(N,\ S,\ E,\ W\) for \(north,\ south,\ east\ \)and\(\ west\) respectively. Note, each quadrant between the cardinal points is \(90{^\circ}\) and measured from the north-south axis.

  • Using the three-digit notation

  • POINTSCARDINAL POINT NOTATION3-DIGIT NOTATION
     \[N\ 30{^\circ}\ E\]\[030{^\circ}\]
     \[S50{^\circ}E\]\[130{^\circ}\]
     \[S65{^\circ}W\]\[245{^\circ}\]
     \[N25{^\circ}W\]\[335{^\circ}\]

    \[P_{1} = 030{^\circ}\]

    \[P_{2} = 180{^\circ} - 50{^\circ} = 130{^\circ}\]

    \[P_{3} = 180{^\circ} + 65{^\circ} = 245{^\circ}\]

    \[P_{4} = 360{^\circ} - 25{^\circ} = 335{^\circ}\]

    Example: A man walks \(100m\) due north and then \(150m\) on a bearing of \(S38{^\circ}W\). How far and on what bearing is he from his original position?

    Solution

    Using the cosine rule, \(a^{2} = b^{2} + c^{2} - 2bc\cos A\)

    \[a^{2} = 100^{2} + 150^{2} - 2(100)(150)\cos{38{^\circ}}\]

    \[a^{2} = 10,000 + 22,500 - (30,000)(0.7880)\]

    \[a^{2} = 10,000 + 22,500 - 23,640\]

    \[a^{2} = 8,860\]

    \[a = \sqrt{8860} = \ 94.12m\]

    Using the sine rule, \(\frac{a}{\sin A} = \frac{c}{\sin C}\)

    \[\frac{94.12}{\sin{38{^\circ}}} = \frac{150}{\sin C}\ \ \ \rightarrow \ \ \sin C = \ \frac{\sin{38{^\circ}} \times 150}{94.12}\ \ \ \ \rightarrow \ \ \ \sin C = \frac{0.6157 \times 150}{94.12}\ \ \ \rightarrow \ \ \sin C = \ 0.9812\]

    \[C = \ \sin^{- 1}{0.9812} \approx 79{^\circ}\]

    \[Bearing\ of\ his\ final\ position\ from\ the\ starting\ position\ = \ 360{^\circ} - 79{^\circ}\ = 281{^\circ}\]

    Recommended: Questions and Answers on Trigonometric Ratios II for SS2 Mathematics
    Please share this, thanks:

    Add a Comment

    Notice: Posting irresponsibily can get your account banned!

    No responses