Courses » SS2 » SS2 Mathematics » Bearings - SS2 Mathematics Lesson Note

Bearings - SS2 Mathematics Lesson Note

Consider the two points N and P away from a point O on a map, N is north of O and the bearing of P from O is NOP.

Bearing is always measured clockwise from ON.

In measuring bearing angles, there are usually two ways to do this:

  1. Using the cardinal point notation N, S, E, W for north, south, east and west respectively. Note, each quadrant between the cardinal points is 90 and measured from the north-south axis.

  2. Using the three-digit notation

POINTS CARDINAL POINT NOTATION 3-DIGIT NOTATION
  N 30 E 030
  S50E 130
  S65W 245
  N25W 335

P1=030

P2=18050=130

P3=180+65=245

P4=36025=335

Example: A man walks 100m due north and then 150m on a bearing of S38W. How far and on what bearing is he from his original position?

Solution

Using the cosine rule, a2=b2+c22bccosA

a2=1002+15022(100)(150)cos38

a2=10,000+22,500(30,000)(0.7880)

a2=10,000+22,50023,640

a2=8,860

a=8860= 94.12m

Using the sine rule, asinA=csinC

94.12sin38=150sinC     sinC= sin38×15094.12       sinC=0.6157×15094.12     sinC= 0.9812

C= sin10.981279

Bearing of his final position from the starting position = 36079 =281

Please share this, thanks:

Add a Comment

Notice: Please post responsibly.

No responses