Courses » SS2 » SS2 Mathematics » Geometric progression - SS2 Mathematics Lesson Note

Geometric progression - SS2 Mathematics Lesson Note

If a sequence of numbers is such that the ratio (known as the common ratio\(r\)) of any term to the term just preceding it, is constant then the sequence is a geometric progression or geometric sequence. In a sequence, \(2,\ 6,\ 18,\ 54\), the common ratio is \(\frac{6}{2} = \frac{18}{6} = \frac{54}{18} = 3\), making this a geometric sequence.

The \(n\)th term of a G.P. is \(T_{n} = ar^{n - 1}\)

The sum or series of \(n\) terms of a G.P. is:

  1. \(S_{n} = \frac{a(1 - r^{n})}{1 - r}\) when \(r < 1\)

  2. \(S_{n} = \frac{a(r^{n} - 1)}{r - 1}\ when\ r > 1\ \).

  3. \(S_{n} = an\) when \(r = 1\)

Example 3

  1. What is the 12th term of the GP \(2,\ 14,\ 98,\ \ldots\)

  2. Find the sum of 10 terms of the GP \(4,\ 8,\ 16,\ \ldots\)

Solution

  1. \(T_{n} = ar^{n - 1}\), where \(n = 12\)\(a = 2\) and \(r = \frac{14}{2} = 7\)

\[T_{12} = (2){(7}^{12 - 1})\]

\(T_{12} = 2{(7}^{11})\) , unless otherwise required it is fine to leave your answer in index form

  1. Given a GP = \(4,\ 8,\ 16,\ \ldots\)\(r = \frac{8}{4} = 2\)

\[S_{n} = \frac{a(r^{n} - 1)}{r - 1}\ \]

\[S_{10} = \frac{4(2^{10} - 1)}{2 - 1} = \ \frac{4 \times 2^{10} - 4}{1} = 4 \times 2^{10} - 4 = \ 2^{2} \times 2^{10} - 2^{2} = 2^{12} - 2^{2}\]

The geometric mean of a set of numbers is the positive square root of the product of the first and last terms of the progression. That is, GM = \(\sqrt{al}\)

Example 4 Find three geometric means between \(7\frac{1}{2}\) and \(120\)

Solution

Let the geometric means be x, y and z between \(7\frac{1}{2}\) and \(120\), then \(7\frac{1}{2},\ x,\ y,\ z,\ 120\) will be GP. Suppose the common ratio be \(r\), then since \(a\ = 7\frac{1}{2}\) and \(T_{n}\ = \ 120\), we have,

\[T_{n} = ar^{n - 1}\]

\[T_{5} = 120 = (7\frac{1}{2})r^{4}\]

\[\frac{120}{1} = \frac{15r^{4}}{2}\]

\[240 = 15r^{4}\]

\[r^{4} = \frac{240}{15} = 16\]

\[r^{4} = 2^{4}\]

\[r = 2\]

\[x = T_{2} = \left( 7\frac{1}{2} \right)2^{2 - 1} = 15\]

\[y = \ T_{3} = \left( 7\frac{1}{2} \right)2^{3 - 1} = 30\]

\[z = \ T_{4} = \left( 7\frac{1}{2} \right)2^{4 - 1} = 60\]

Hence, the three geometric means between \(7\frac{1}{2}\) and \(120\) are \(15,\ 30\ and\ 60\).

Please share this, thanks:

Add a Comment

Notice: Please post responsibly.

No responses