Courses » SS2 » SS2 Mathematics » Laws of Algebra of logical statements - SS2 Mathematics Lesson Note

Laws of Algebra of logical statements - SS2 Mathematics Lesson Note

Let \(p,q,r\) be logical statements, then the following laws hold:

  1. Commutative Laws:

  1. \(p \land q = q \land p\)

  • \(p \vee q = q \vee p\)

  • Associative Laws:

    1. \((p \land q) \land r = p \land (q \land r)\)

  • \((p \vee q) \vee r = p \vee (q \vee r)\)

  • Distributive Laws:

    1. \(p \land (q \vee r) = (p \land q) \vee (p \land r)\)

  • \(p \vee (q \land r) = (p \vee q) \land (p \vee r)\)

  • Idempotent Laws:

    1. \(p \land p = p\)

  • \(p \vee p = p\)

  • Identity Laws:

    1. \(p \land T = p\)

  • \(p \land F = F\)

  • \(p \vee T = T\)

  • \(p \vee F = p\)

  • DeMorgan’s Laws:

    1. \(\sim(p \land q) = \sim p \vee \sim q\)

  • \(\sim(p \vee q) = \sim p \land \sim q\)

  • Complement Laws:

    1. \(p \land \sim p = F\)

  • \(p \vee \sim p = T\)

  • \(\sim(\sim p) = p\)

  • ~T=F; ~F=T

  • Law of Syllogism (Chain Rule):

    1. \((p \rightarrow q) \land (q \rightarrow r) \rightarrow (q \rightarrow r)\)

    Recommended: Questions and Answers on Logical Reasoning for SS2 Mathematics
    Please share this, thanks:

    Add a Comment

    Notice: Posting irresponsibily can get your account banned!

    No responses