Logical equivalence - SS2 Mathematics Lesson Note
A situation of logical equivalence arises when the truth values of two compound statements are the same. For instance, an implicative statement and a contradiction are logical equivalents. So is a converse and inverse statement.
Implication | Converse | Inverse | Contrapositive | ||||
---|---|---|---|---|---|---|---|
\[\mathbf{p}\] | \[\mathbf{q}\] | \[\mathbf{\sim p}\] | \[\mathbf{\sim q}\] | \[\mathbf{p \Rightarrow q}\] | \[\mathbf{q}\mathbf{\Rightarrow}\mathbf{p}\] | \[\mathbf{\sim p}\mathbf{\Rightarrow}\mathbf{\sim q}\] | \[\mathbf{\sim q}\mathbf{\Rightarrow \sim p}\] |
\[T\] | \[T\] | \[F\] | \[F\] | \[T\] | \[T\] | \[T\] | \[T\] |
\[T\] | \[F\] | \[F\] | \[T\] | \[F\] | \[T\] | \[T\] | \[F\] |
\[F\] | \[T\] | \[T\] | \[F\] | \[T\] | \[F\] | \[F\] | \[T\] |
\[F\] | \[F\] | \[T\] | \[T\] | \[T\] | \[T\] | \[T\] | \[T\] |