Logical equivalence - SS2 Mathematics Lesson Note

A situation of logical equivalence arises when the truth values of two compound statements are the same. For instance, an implicative statement and a contradiction are logical equivalents. So is a converse and inverse statement.

  Implication Converse Inverse Contrapositive
\[\mathbf{p}\] \[\mathbf{q}\] \[\mathbf{\sim p}\] \[\mathbf{\sim q}\] \[\mathbf{p \Rightarrow q}\] \[\mathbf{q}\mathbf{\Rightarrow}\mathbf{p}\] \[\mathbf{\sim p}\mathbf{\Rightarrow}\mathbf{\sim q}\] \[\mathbf{\sim q}\mathbf{\Rightarrow \sim p}\]
\[T\] \[T\] \[F\] \[F\] \[T\] \[T\] \[T\] \[T\]
\[T\] \[F\] \[F\] \[T\] \[F\] \[T\] \[T\] \[F\]
\[F\] \[T\] \[T\] \[F\] \[T\] \[F\] \[F\] \[T\]
\[F\] \[F\] \[T\] \[T\] \[T\] \[T\] \[T\] \[T\]
Chat with EduPadi AI about this lesson

Please share this, thanks!

Add a Comment

Notice: Please post responsibly.

No responses