Courses » SS3 » SS3 Mathematics » Matrix Algebra - Addition & Subtraction, Scalar Multiplication - SS3 Mathematics Lesson Note

Matrix Algebra - Addition & Subtraction, Scalar Multiplication - SS3 Mathematics Lesson Note

ADDITION AND SUBTRACTION OF MATRICES

The sum (or difference) of two matrices \(A\) and \(B\) is a matrix whose elements are the result of the sum (or difference) of the corresponding entries of \(A\) and \(B\).

Given two matrices, \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix}\) and \(B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix}\),

The matrix \(A + B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ \end{bmatrix}\)

Likewise, the matrix \(A - B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \\ \end{bmatrix}\)

Example 1 Given \(A = \begin{bmatrix} 4 & 1 \\ 0 & 2 \\ \end{bmatrix}\) and \(B = \begin{bmatrix} 8 & - 5 \\ 13 & 6 \\ \end{bmatrix}\). Solve:

  1. \(A + B\)

  • \(A - B\)

  • \(B - A\)

  • Solution

    1. \(A + B = \begin{bmatrix} 4 + 8 & 1 + ( - 5) \\ 0 + 13 & 2 + 6 \\ \end{bmatrix} = \begin{bmatrix} 12 & - 4 \\ 13 & 8 \\ \end{bmatrix}\)

  • \(A - B = \begin{bmatrix} 4 - 8 & 1 - ( - 5) \\ 0 - 13 & 2 - 6 \\ \end{bmatrix} = \begin{bmatrix} - 4 & 6 \\ - 13 & - 4 \\ \end{bmatrix}\)

  • \(B - A = \ \begin{bmatrix} 8 - 4 & - 5 - 1 \\ 13 - 0 & 6 - 2 \\ \end{bmatrix} = \begin{bmatrix} 4 & - 6 \\ 13 & 4 \\ \end{bmatrix}\)

  • SCALAR MULTIPLICATION OF MATRICES

    The product of a matrix \(A\) and a scalar (number) \(K\) is called the scalar product of a matrix \(A\) and the scalar \(K\) and is defined by the matrix \(KA\) whose elements are \(K\) times the elements of \(A\).

    If \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix}\), then \(KA = \begin{bmatrix} Ka_{11} & Ka_{12} \\ Ka_{21} & Ka_{22} \\ \end{bmatrix}\).

    Example 2 Given that \(A = \begin{bmatrix} 5 & 3 & 4 \\ 2 & - 3 & 1 \\ \end{bmatrix}\) and \(B = \begin{bmatrix} 0 & 3 & - 1 \\ 5 & 3 & 6 \\ \end{bmatrix}\). Evaluate \(4(2A + 3B)\)

    Solution

    \[4(2A + 3B) = \ \ 4\left\lbrack 2\begin{bmatrix} 5 & 3 & 4 \\ 2 & - 3 & 1 \\ \end{bmatrix} + 3\begin{bmatrix} 0 & 3 & - 1 \\ 5 & 3 & 6 \\ \end{bmatrix} \right\rbrack\]

    \[= 4\left\lbrack \begin{bmatrix} 2(5) & 2(3) & 2(4) \\ 2(2) & 2( - 3) & 2(1) \\ \end{bmatrix} + \begin{bmatrix} 3(0) & 3(3) & 3( - 1) \\ 3(5) & 3(3) & 3(6) \\ \end{bmatrix} \right\rbrack = 4\left\lbrack \begin{bmatrix} 10 & 6 & 8 \\ 4 & - 6 & 2 \\ \end{bmatrix} + \begin{bmatrix} 0 & 9 & - 3 \\ 15 & 9 & 18 \\ \end{bmatrix} \right\rbrack\]

    \[= 4\left\lbrack \begin{bmatrix} 10 + 0 & 6 + 9 & 8 + ( - 3) \\ 4 + 15 & - 6 + 9 & 2 + 18 \\ \end{bmatrix} \right\rbrack = 4\begin{bmatrix} 10 & 15 & 5 \\ 19 & 3 & 20 \\ \end{bmatrix}\]

    \[= \begin{bmatrix} 4(10) & 4(15) & 4(5) \\ 4(19) & 4(3) & 4(20) \\ \end{bmatrix} = \begin{bmatrix} 40 & 60 & 20 \\ 76 & 12 & 80 \\ \end{bmatrix}\]

    MATRIX MULTIPLICATION

    Two matrices \(A\) and \(B\) can be multiplied together only when the number of columns of the first matrix \(A\) equals the number of rows of the second matrix \(B\). A \(3 \times 2\) matrix multiplies a \(2 \times 3\) matrix to produce a \(3 \times 3\) matrix.

    Generally, the product of two matrices A and B defined as AB is a matrix C such that:

    \[AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{bmatrix}\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ \end{bmatrix} = C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \\ \end{bmatrix}\]

    Where \(c_{11} = a_{11}b_{11} + a_{12}b_{21}\)

    \(c_{12} = a_{11}b_{12} + a_{12}b_{22}\)

    \(c_{13} = a_{11}b_{13} + a_{12}b_{23}\)

    \[c_{21} = a_{21}b_{11} + a_{22}b_{21}\]

    \(c_{22} = a_{21}b_{12} + a_{22}b_{22}\)

    \(c_{23} = a_{21}b_{13} + a_{22}b_{23}\)

    \[c_{31} = a_{31}b_{11} + a_{32}b_{21}\]

    \(c_{32} = a_{31}b_{12} + a_{32}b_{22}\)

    \(c_{33} = a_{31}b_{13} + a_{32}b_{23}\)

    Example 3 Let \(A = \begin{bmatrix} 2 & 3 \\ 0 & - 2 \\ 4 & 5 \\ \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 3 & 2 \\ - 1 & 0 & 6 \\ \end{bmatrix}\). Find \(AB\)

    Solution

    \(A = \begin{bmatrix} 2 & 3 \\ 0 & - 2 \\ 4 & 5 \\ \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 3 & 2 \\ - 1 & 0 & 6 \\ \end{bmatrix}\)

    \[c_{11} = 2(1) + 3( - 1)\]

    \(c_{12} = 2(3) + 3(0)\)

    \(c_{13} = 2(2) + 3(6)\)

    \[c_{21} = 0(1) + ( - 2)( - 1)\]

    \(c_{22} = 0(3) + ( - 2)(0)\)

    \(c_{23} = 0(2) + ( - 2)(6)\)

    \[c_{31} = 4(1) + 5( - 1)\]

    \(c_{32} = 4(3) + 5(0)\)

    \(c_{33} = 4(2) + 5(6)\)

    \[c_{11} = 2 - 3\]

    \(c_{12} = 6 + 0\)

    \(c_{13} = 4 + 18\)

    \[c_{21} = 0 + 2\]

    \(c_{22} = 0 + 0\)

    \(c_{23} = 0 - 12\)

    \[c_{31} = 4 - 5\]

    \(c_{32} = 12 + 0\)

    \[c_{33} = 8 + 30\]

    \[AB = C = \begin{bmatrix} - 1 & 6 & 22 \\ 2 & 0 & - 12 \\ - 1 & 12 & 38 \\ \end{bmatrix}\]

     

    Recommended: Questions and Answers on Matrices and Determinants for SS3 Mathematics
    Please share this, thanks:

    Add a Comment

    Notice: Posting irresponsibily can get your account banned!

    No responses