Courses » SS2 » SS2 Mathematics » Tautology and contradiction - SS2 Mathematics Lesson Note

Tautology and contradiction - SS2 Mathematics Lesson Note

A compound statement that is always true irrespective of the truth values of its sub-statements is a tautology. On the reverse, a compound statement whose truth value is always false no matter what the truth values of its sub-statements are is a contradiction.

The statement \(p \vee \sim p\) ( \(p\ or\ not\ p\)) is a tautology. Example, \(our\ second\ child\ is\ either\ a\ male\ or\ female.\)

\[\mathbf{p}\] \[\mathbf{\sim p}\] \[\mathbf{p \vee \sim p}\]
\[T\] \[F\] \[T\]
\[F\] \[T\] \[T\]

The statement \(p \land \sim p\) ( \(p\ and\ not\ p\)) is a contradiction. Example, \(the\ shape\ of\ the\ earth\ is\ flat\ and\ round\).

\[\mathbf{p}\] \[\mathbf{\sim p}\] \[\mathbf{p \land \sim p}\]
\[T\] \[F\] \[F\]
\[F\] \[T\] \[F\]
Please share this, thanks:

Add a Comment

Notice: Please post responsibly.

No responses