1995 - JAMB Mathematics Past Questions and Answers - page 4
For what value of x is the tangent to the curve y = x2 - 4x + 3 parallel to the x-axis?
Two variables x and y are such that (\frac{dy}{dx}) = 4x - 3 and y = 5 when x = 2. Find y in terms of x
Find the area bounded by the curve y = 3x2 - 2x + 1, the ordinates x = 1 and x = 3 and the a-axix
(\begin{array}{c|c} \text{Age in years} & 13 & 14 & 15 & 16 & 17 \ \hline \text{No. of students} & 3 & 10 & 30 & 42 & 15\end{array})
The frequency distribution above shows the ages of students in a secondary school. In a pie chart constructed to represent the data, the angles corresponding to the 15 years old is
The pie chart shows the distribution of students in a secondary school class. If 30 students offered French, how many offered C.R.K?
(\begin{array}{c|c} class& 1 - 3 & 4 - 6 & 7 - 9\ \hline Frequency & 5 & 8 & 5\end{array})
Find the standard deviation of the data using the table above
The variance of the scores 1, 2, 3, 4, 5 is
(\begin{array}{c|c} \text{Class Interval} & Frequency & \text{Class boundaries} & Class Mid-point \ \hline 1.5 - 1.9 & 2 & 1.45 - 1.95 & 1.7\ 2.0 - 2.4 & 21 & 1.95 - 2.45 & 2.2\ 2.5 - 2.9 & 4 & 2.45 - 2.95 & 2.7 \ 3.0 - 2.9 & 15 & 2.95 - 3.45 & 3.2\ 3.5 - 3.9 & 10 & 3.45 - 3.95 & 3.7\ 4.0 - 4.4 & 5 & 3.95 - 4.45 & 4.2\ 4.5 - 4.9 & 3 & 4.45 - 4.95 & 4.7\end{array})
Find the mode of the distribution above to find the mode of the distribution.
(\begin{array}{c|c} \text{Class Interval} & Frequency & \text{Class boundaries} & Class Mid-point \ \hline 1.5 - 1.9 & 2 & 1.45 - 1.95 & 1.7\ 2.0 - 2.4 & 21 & 1.95 - 2.45 & 2.2\ 2.5 - 2.9 & 4 & 2.45 - 2.95 & 2.7 \ 3.0 - 2.9 & 15 & 2.95 - 3.45 & 3.2\ 3.5 - 3.9 & 10 & 3.45 - 3.95 & 3.7\ 4.0 - 4.4 & 5 & 3.95 - 4.45 & 4.2\ 4.5 - 4.9 & 3 & 4.45 - 4.95 & 4.7\end{array})
The median of the distribution above is
Let p be a probability function on set S, where S = (a1, a2, a3, a4). Find P(a1) if P(a2) = (\frac{1}{3}), p(a3) = (\frac{1}{6}) and p(a4) = (\frac{1}{5})