A binary operation oplus om real numbers is def... - JAMB Mathematics 2011 Question
A binary operation \(\oplus\) om real numbers is defined by x \(\oplus\) y = xy + x + y for two real numbers x and y. Find the value of 3 \(\oplus\) - \(\frac{2}{3}\).
A
- \(\frac{1}{2}\)
B
\(\frac{1}{3}\)
C
-1
D
2
correct option: b
N + Y = XY + X + Y
3 + -\(\frac{2}{3}\) = 3(- \(\frac{2}{3}\)) + 3 + (- \(\frac{2}{3}\))
= -2 + 3 -\(\frac{2}{3}\)
= \(\frac{1 - 2}{1 - 3}\)
= \(\frac{1}{3}\)
3 + -\(\frac{2}{3}\) = 3(- \(\frac{2}{3}\)) + 3 + (- \(\frac{2}{3}\))
= -2 + 3 -\(\frac{2}{3}\)
= \(\frac{1 - 2}{1 - 3}\)
= \(\frac{1}{3}\)
Please share this, thanks:
Add your answer
No responses