A flagstaff stands on the top of a vertical tow... - JAMB Mathematics 1991 Question
A flagstaff stands on the top of a vertical tower. A man standing 60 m away from the tower observes that the angles of elevation of the top and bottom of the flagstaff are 64o and 62o respectively. Find the length of the flagstaff.
A
60 (tan 62o - tan 64o)
B
60 (cot 64o - cot 62o)
C
60 (cot 62o - cot 64o)
D
60 (tan 64o - tan 62o)
correct option: d
\(\frac{BC}{60}\) = \(\frac{tan 62}{1}\)
BC = 60 tan 62
\(\frac{AC}{60}\) = \(\frac{tan 62}{1}\)
AC = 60 tan 64
AB = AC - BC
= 60(tan 64o - tan 62o)
BC = 60 tan 62
\(\frac{AC}{60}\) = \(\frac{tan 62}{1}\)
AC = 60 tan 64
AB = AC - BC
= 60(tan 64o - tan 62o)
Please share this, thanks:
Add your answer
No responses