Evaluate int 0 1 4x - 6 3 sqrt x 2 dx - JAMB Mathematics 2023 Question
Evaluate \(\int_0^1 4x - 6^3\sqrt {x^2}dx\)
A
- \(\frac{5}{8}\)
B
- \(\frac{8}{5}\)
C
\(\frac{8}{5}\)
D
\(\frac{5}{8}\)
correct option: b
Let's evaluate the definite integral \(\int_0^1 (4x - 6 \cdot 3\sqrt{x^2}) \, dx\).
First, simplify the integrand:
\[4x - 6 \cdot 3\sqrt{x^2} = 4x - 18\sqrt{x^2}.\]
Now, integrate each term separately:
\[ \int_0^1 (4x - 18\sqrt{x^2}) \, dx = \left[2x^2 - 6x\sqrt{x^2}\right]_0^1.\]
Evaluate the expression at the upper and lower limits:
\[ \left[2(1)^2 - 6(1)\sqrt{1^2}\right] - \left[2(0)^2 - 6(0)\sqrt{0^2}\right] \]
Simplify further:
\[ (2 - 6) - 0 = -4.\]
Therefore, the correct answer is \(-\frac{8}{5}\)
Please share this, thanks:
Add your answer
No responses