Home » Classroom » SS3 Mathematics Differential Calculus (Differentiation) Question

Find from first principle the differential coef... - SS3 Mathematics Differential Calculus (Differentiation) Question

Find from first principle, the differential coefficient of \(y = x^{3}\) 

A

\(\3x^{2}\)

B

\(\12x^{3}\)

C

\({\ x}^{3}\)

D

2x

correct option: a

\(y = x^{3}\) i.e., \(f(x) = x^{3}\)

If \(x\) changes by \(\mathrm{\Delta}x\) then \(f(x + \mathrm{\Delta}x) = (x + \mathrm{\Delta}x)^{3}\)

\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{f(x\ + \mathrm{\Delta}x) - f(x)}{\mathrm{\Delta}x}\]

\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{(x + \mathrm{\Delta}x)^{3} - x^{3}}{\mathrm{\Delta}x}\]

\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{(x + \mathrm{\Delta}x)^{3} - x^{3}}{\mathrm{\Delta}x}\]

\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{x^{3} + 3x^{2}\mathrm{\Delta}x + 3x(\mathrm{\Delta}x)^{2} + (\mathrm{\Delta}x)^{3} - x^{3}}{\mathrm{\Delta}x}\]

\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{3x^{2}\mathrm{\Delta}x + 3x(\mathrm{\Delta}x)^{2} + (\mathrm{\Delta}x)^{3}}{\mathrm{\Delta}x}\]

\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}{3x^{2} + 3x\mathrm{\Delta}x + (\mathrm{\Delta}x)^{2}}\]

\(\mathrm{\Delta}x\) vanishes as \(\mathrm{\Delta}x \rightarrow 0\)

\(\therefore\frac{dy}{dx} = 3x^{2}\)

Please share this, thanks:

Add your answer

Notice: Posting irresponsibily can get your account banned!

No responses