Question on: JAMB Mathematics - 2019
Find the polynomial if given q(x) = x\(^2\) - x - 5, d(x) = 3x - 1 and r(x) = 7.
3x\(^3\) - 4x\(^2\) - 14x + 12
3x\(^2\) + 3x - 7
3x\(^3\) + 4x\(^2\) + 14x - 12
3x\(^2\) - 3x + 4
Given:
q(x) [quotient],
d(x) [divisor]
r(x) [remainder],
the polynomial is determined by multiplying the quotient and the divisor, then adding the remainder.
The polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.
= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7
= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7
= 3x\(^3\) - 4x\(^2\) - 14x + 12
Add your answer
Please share this, thanks!
No responses