Find the sum to infinity of the series frac 1 4... - JAMB Mathematics 2017 Question
Find the sum to infinity of the series
\(\frac{1}{4}\), \(\frac{1}{8}\), \(\frac{1}{16}\),..........
\(\frac{1}{4}\), \(\frac{1}{8}\), \(\frac{1}{16}\),..........
A
\(\frac{1}{2}\)
B
\(\frac{3}{5}\)
C
\(\frac{-1}{5}\)
D
\(\frac{73}{12}\)
correct option: a
Sum to infinity
∑ = arn − 1
= \(\frac{a}{1}\) − r
a = \(\frac{1}{4}\)
r = \(\frac{1}{8}\) ÷ \(\frac{1}{4}\)
r = \(\frac{1}{s}\) × \(\frac{4}{1}\)
= \(\frac{1}{2}\)
S = \(\frac{1 \div 4}{1}\) − \(\frac{1}{2}\)
= \(\frac{1}{4}\) ÷ \(\frac{1}{2}\)
= \(\frac{1}{4}\) × \(\frac{2}{1}\)
= \(\frac{1}{2}\)
∑ = arn − 1
= \(\frac{a}{1}\) − r
a = \(\frac{1}{4}\)
r = \(\frac{1}{8}\) ÷ \(\frac{1}{4}\)
r = \(\frac{1}{s}\) × \(\frac{4}{1}\)
= \(\frac{1}{2}\)
S = \(\frac{1 \div 4}{1}\) − \(\frac{1}{2}\)
= \(\frac{1}{4}\) ÷ \(\frac{1}{2}\)
= \(\frac{1}{4}\) × \(\frac{2}{1}\)
= \(\frac{1}{2}\)
Please share this, thanks:
Add your answer
No responses