If log 10 6x - 4 - log 10 2 1 solve for x - WAEC Mathematics 2018 Question
If \(\log_{10}\)(6x - 4) - \(\log_{10}\)2 = 1, solve for x.
A
2
B
3
C
4
D
5
correct option: c
\(\log_{10}\)(6x - 4) - \(\log_{10}\)2 = 1
\(\log_{10}\)(6x - 4) - \(\log_{10}\)2 = \(\log_{10}\)10
\(\log_{10}\)\(\frac{6x - 4}{2}\) - \(\log_{10}\)10
\(\frac{6x - 4}{2}\) = 10
6x - 4 = 2 x 10
= 20
6x = 20 + 4
6x = 20
x = \(\frac{24}{6}\)
x = 4
Please share this, thanks:
Add your answer
No responses