If logX frac 1 2 64 3 find the value of x - JAMB Mathematics 2008 Question
If \(logX^{\frac{1}{2}}\) 64 = 3, find the value of x.
A
4
B
16
C
32
D
64
correct option: b
\(logX^{\frac{1}{2}}\) 64 = 3, find the value of X
recall that X = 10p
log10X = P
64 = \(X^{\frac{1}{2}}\)
43 = \(X^{\frac{1}{2}}\)
\(4^{3 \times \frac{1}{2}}\) = \(X^{\frac{1}{2} \times \frac{1}{3}}\)
4 = \(X^{\frac{1}{2}}\)
(4)2 = \(X^{\frac{1}{2} \times 2}\)
x = 16
recall that X = 10p
log10X = P
64 = \(X^{\frac{1}{2}}\)
43 = \(X^{\frac{1}{2}}\)
\(4^{3 \times \frac{1}{2}}\) = \(X^{\frac{1}{2} \times \frac{1}{3}}\)
4 = \(X^{\frac{1}{2}}\)
(4)2 = \(X^{\frac{1}{2} \times 2}\)
x = 16
Please share this, thanks:
Add your answer
No responses