If the lines 3y 4x - 1 and qy x 3 are parallel ... - JAMB Mathematics 2007 Question
If the lines 3y = 4x - 1 and qy = x + 3 are parallel to each other, the value of q is
A
-\(\frac{4}{3}\)
B
-\(\frac{3}{4}\)
C
\(\frac{3}{4}\)
D
\(\frac{4}{3}\)
correct option: c
L1\(\Rightarrow\) 3Y = 4X - 1
Y = \(\frac{4}{3}\)X - \(\frac{1}{3}\)
therefore m1 = \(\frac{4}{3}\)
L2\(\Rightarrow\) qy = x + 3
y = \(\frac{1}{q}\)X + \(\frac{3}{q}\)
therefore, m2 = \(\frac{1}{q}\)
For parallel lines, m1 = m2; \(\frac{4}{3}\) = \(\frac{1}{q}\)
therefore q = \(\frac{3}{4}\)
Y = \(\frac{4}{3}\)X - \(\frac{1}{3}\)
therefore m1 = \(\frac{4}{3}\)
L2\(\Rightarrow\) qy = x + 3
y = \(\frac{1}{q}\)X + \(\frac{3}{q}\)
therefore, m2 = \(\frac{1}{q}\)
For parallel lines, m1 = m2; \(\frac{4}{3}\) = \(\frac{1}{q}\)
therefore q = \(\frac{3}{4}\)
Please share this, thanks:
Add your answer
No responses