Home » Classroom » JAMB Mathematics 2020 Question

If x is positive real number find the range of ... - JAMB Mathematics 2020 Question

If x is positive real number, find the range of values for which \(\frac{1}{3}\)x + \(\frac{1}{2}\) > \(\frac{1}{4}\)x

A

x > -\(\frac{1}{6}\)

B

x > 0

C

0 < x < 6

D

0 < x <\(\frac{1}{6}\)

correct option: a

\(\frac{1}{3x}\) + \(\frac{1}{2}\)x

=> \(\frac{2 + 3x}{6x}\) > \(\frac{1}{4x}\) 

= 4(2 + 3x) > 6x = 12x\(^2\) - 2x = 0

= 2x(6x - 1) > 0 = x(6x - 1) > 0

(-, -) = x < 0, 6x - 1 > 0.  - - - - -  - - 1

= x < 0, x < \(\frac{1}{6}\) (solution) 

(+, +) = x > 0, 6x - 1 > 0 = x > 0 - - - - -- - - - 2

x > \(\frac{1}{6}\)

Combining (1) and (2):

= x > 0, x < \(\frac{1}{6}\)

= 0 < x < \(\frac{1}{6}\) 

Please share this, thanks:

Add your answer

Notice: Posting irresponsibily can get your account banned!

No responses