Home » Classroom » SS2 Mathematics Trigonometric Ratios II Question

Solve the mathrm Delta ABC which have angle A 1... - SS2 Mathematics Trigonometric Ratios II Question

Solve the \(\mathrm{\Delta}ABC\) which have \(\angle A = 145{^\circ},\ \angle B = 23{^\circ}\ \)and\(\ b = 5.02cm\) using the sine rule

First, calculate the \(\angle C\)

\[\angle C = 180{^\circ} - (\angle A + \angle B)\]

\[\angle C = 180{^\circ} - (145{^\circ} + 23{^\circ})\]

\[\angle C = 180{^\circ} - 168{^\circ}\]

\[\angle C = 12{^\circ}\]

From the Sine Rule, \(\frac{a}{\sin A} = \frac{b}{\sin B}\)

\[\frac{a}{\sin 145} = \frac{5.02}{\sin 23}\]

\[\frac{a}{0.5736} = \frac{5.02}{0.3907}\]

\[a = \frac{5.02 \times 0.5736}{0.3907} \approx 7.37cm\]

From the Sine Rule, \(\frac{b}{\sin B} = \frac{c}{\sin C}\)

\[\frac{5.02}{\sin 23} = \frac{c}{\sin 12}\]

\[\frac{5.02}{0.3907} = \frac{c}{0.2079}\]

\[c = \frac{5.02 \times 0.2079}{0.3907} \approx 2.67cm\]

Please share this, thanks:

Add your answer

Notice: Posting irresponsibily can get your account banned!

No responses