Question on: SS2 Mathematics - Simultaneous Linear and Quadratic Equations

Solve the simultaneous equations \(x + y = 8\) and \(x^{2} - y^{2} = 16\)

View related lesson
A

(0; - 3) or ( - 7;5)

B

( - 4;3) or (2;5)

C

(5;3)

D

(3;3) or (5;5)

Ask EduPadi AI for a detailed answer
Correct Option: C

\(x + y = 8\) (1)

\(x^{2} - y^{2} = 16\) (2)

From (1), transpose \(y\)

\[x + y = 8\]

\[y = 8 - x\]

Substitute the value of \(y\) in (2)

\[x^{2} - {(8 - x)}^{2} = 16\]

\[16x - 64 = 16\]

\[16x = 16 + 64\]

\[16x = 80\]

\[16x - 80 = 0\]

\[16(x - 5) = 0\]

\[\therefore x = 5\]

Substitute the values of \(x\) in (1)

\[x + y = 8\]

\[5 + y = 8\]

\[y = 8 - 5 = 3\]

The solution to the simultaneous equations \(2x + y = 5\) and \(x^{2} + y^{2} = 25\) is the ordered pairs: \((5;3)\)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses