Home » Classroom » SS2 Mathematics Statistics Question

The data below is the scores of a set of studen... - SS2 Mathematics Statistics Question

  1. The data below is the scores of a set of students in a microbiology class. Solve for the relevant measures of central tendency and dispersion.

\[Score\]\[Frequency\]
\[50 - 54\]\[3\]
\[55 - 59\]\[5\]
\[60 - 64\]\[8\]
\[65 - 69\]\[10\]
\[70 - 74\]\[7\]
\[75 - 79\]\[6\]
\[80 - 84\]\[3\]
\[85 - 89\]\[2\]
\[90 - 94\]\[1\]
Ask EduPadi AI for a Detailed Answer
\[Score\]\[f\]\[cf\]\[X\]\[Xf\]\[\overline{X}\]\[X - \overline{X} = d\]\[d^{2}\]\[fd^{2}\]\[|d\text{|}\]\[f|d|\]
\[50 - 54\]\[3\]\[3\]\[52\]156\[69\]\[- 17\]\[289\]\[867\]\[17\]\[51\]
\[55 - 59\]\[5\]\[8\]\[57\]\[286\]\[69\]\[- 12\]\[144\]\[720\]\[12\]\[60\]
\[60 - 64\]\[8\]\[16\]\[62\]\[496\]\[69\]\[- 7\]\[49\]\[392\]\[7\]\[56\]
\[65 - 69\]\[10\]\[26\]\[67\]\[670\]\[69\]\[- 2\]\[4\]\[40\]\[2\]\[20\]
\[70 - 74\]\[7\]\[33\]\[72\]\[504\]\[69\]\[3\]\[9\]\[63\]\[3\]\[21\]
\[75 - 79\]\[6\]\[39\]\[77\]\[462\]\[69\]\[8\]\[64\]\[384\]\[8\]\[48\]
\[80 - 84\]\[3\]\[42\]\[82\]\[246\]\[69\]\[13\]\[169\]\[507\]\[13\]\[39\]
\[85 - 89\]\[2\]\[44\]\[87\]\[174\]\[69\]\[18\]\[324\]\[648\]\[18\]\[36\]
\[90 - 94\]\[1\]\[45\]\[92\]\[92\]\[69\]\[23\]\[529\]\[529\]\[23\]\[23\]
  1. \(Mean,\ \overline{X} = \frac{\sum_{}^{}{Xf}}{\sum_{}^{}f} = \ \frac{3,086}{45} = 68.58 \approx 69\)

  2. \(\frac{n + 1}{2} = \ \frac{45 + 1}{2} = \frac{46}{2} = 23\)

This means the median is 23rd item in the fourth class (\(65 - 69\)), so we take the calculate the median for this grouped data as \(l_{m} + {(\frac{\frac{\sum_{}^{}f}{2} - {cf}_{cb}}{f_{m}})}^{c}\)

\[l_{m} = 64.5\]

\[\sum_{}^{}f = 45\]

\[{cf}_{cb}\ = 16\]

\[f_{m} = 10\]

\[c = 5\]

\[median = l_{m} + (\frac{\frac{\sum_{}^{}f}{2} - {cf}_{cb}}{f_{m}})c\]

\[= 64.5 + \left( \frac{\frac{45}{2} - 16}{10} \right) \times 5 = \ 67.75\]

  1. The mode is the fourth class \(65 - 69\) with frequency of \(10\)

  2. mean absolute deviation, \(MD = \frac{\sum_{}^{}{f|d|}}{\sum_{}^{}f} = \frac{354}{45} = 7.87\)

  3. \(standard\ deviation,\ \sigma = \ \sqrt{\frac{\sum_{}^{}{f{(X - \overline{X})}^{2}}}{\sum_{}^{}f}} = \sqrt{\frac{4150}{45}} = \sqrt{92.22} = 9.603\)

  4. \(variance,\ \sigma^{2} = {9.603}^{2} = 92.22\)

Please share this, thanks:

#SS2 #SS2

Add your answer

Notice: Please post responsibly.

No responses