Courses » SS1 » SS1 Mathematics » Converting Positive Integers - SS1 Mathematics Lesson Note

Converting Positive Integers - SS1 Mathematics Lesson Note

Given a positive integer n to be converted to its equivalent R in mod m, thus,

nm=q   remainder  R,

Thus, n=R (mod m)

n=q.m+R, where q is any positive whole number whose product with m is as close as possible to n without exceeding n. This is a statement to test if the congruence between R and n is true.

Example: Convert 51 to its equivalent in mod 10

Solution

n=51 and m=10

nm= 5110=5 remainder 1

Thus, 51 1 (mod 10) meaning 51 is equivalent to 1 in mod 10.

Checking with n=q.m+R

51=5.10+1

51=50+1

51=51, which is true, so we are correct.

 

Example: Find x in the equation, 3 x (mod 4) (In essence, find the equivalent of ordinary 3 in mod 4)

Solution

n=3 and  m=4

34=0 remainder 3

Thus, 33(mod 4) and x=3

Please share this, thanks:

Add a Comment

Notice: Please post responsibly.

No responses