Trigonometric Ratios - SS1 Mathematics Lesson Note
The basic trigonometric ratios are defined in term of the sides of a right angles triangle.
Side \(a\) or \(BC\) is the opposite (opposite \(\theta\)).
Side \(b\) or \(AC\) is the adjacent (adjacent/beside \(\theta\)).
Side \(c\) or \(AB\) is the hypotenuse.
1. The basic trigonometric ratios \(sine\ \theta,\ cosine\ \theta\) and \(tangent\ \theta\) are defined as follows:
\(sine\ \theta = \ \frac{opposite}{hypotensue} = \frac{BC}{AB} = \frac{a}{c}\) \(cosine\ \theta = \ \frac{adjacent}{hypotensue} = \frac{AC}{AB} = \frac{b}{c}\) \(tangent\ \theta = \ \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{a}{b}\)
2. The reciprocal of these basic trigonometric functions are similarly important:
\[cosecant\ \theta\ (cosec\ \theta) = \frac{1}{\sin\theta} = \ \frac{hypotensue}{opposite} = \frac{AB}{BC} = \frac{c}{a}\]
\[secant\ \theta\ (sec\ \theta) = \frac{1}{\cos\theta} = \ \frac{hypotensue}{adjacent} = \frac{AB}{AC} = \frac{c}{b}\]
\[cotangent\ \theta\ (cot\ \theta) = \frac{1}{\tan\theta} = \ \frac{adjacent}{opposite} = \frac{AC}{BC} = \frac{b}{a}\]
3. Notice something important when considering \(sine\), \(cosine\) and \(tangent\):
\(\frac{\sin\theta}{\cos\theta} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{a}{c} \div \frac{b}{c} = \frac{a}{c} \times \frac{c}{b} = \frac{a}{b} = \tan\theta\) And \(\frac{\cos\theta}{\sin\theta} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{b}{c} \div \frac{a}{c} = \frac{b}{c} \times \frac{c}{a} = \frac{b}{a} = \cot\theta\)
4. Finally, the sine of any angle is equal to the cosine of its complementary angle and vice versa.
\(\sin\theta = \cos{(90{^\circ} - \theta)}\) \(\cos\theta = \sin{(90{^\circ} - \theta)}\) \(\tan\theta = \cot{(90{^\circ} - \theta)}\)
Example:
In a right-angled triangle where \(\tan\theta = \frac{4}{3}\). Prove that \(\cos\theta\sec\theta = 1\)
Solution
If \(\tan\theta = \frac{4}{3}\)
By Pythagoras theorem, \(c^{2} = a^{2} + b^{2}\)
\[c^{2} = 4^{2} + 3^{2}\]
\[c^{2} = 16 + 9\]
\[c^{2} = 25\]
\[c = \sqrt{25} = 5\]
Hence, \(\sin\theta = \frac{4}{5}\), \(\cos\theta = \frac{3}{5}\). \(sec\ \theta = \frac{1}{\cos\theta} = \frac{5}{3}\)
Therefore, \(\cos\theta\sec\theta = \ \frac{3}{5} \times \frac{5}{3} = 1\)
Example: Find the value of \(\theta\) in the equations: (i) \(\sin\theta - \cos\theta = 0\) (ii) \(\sin\theta = \cos 25{^\circ}\)
Solution
(i) \(\sin\theta - \cos\theta = 0\ \rightarrow \ \sin\theta = \cos\theta\ \rightarrow \ \sin\theta = \sin(90{^\circ} - \theta)\)
Hence, \(\theta = 90{^\circ} - \theta\ \rightarrow \ \theta + \theta = 90{^\circ}\ \rightarrow 2\theta = 90{^\circ}\ \rightarrow \ \theta = \frac{90{^\circ}}{2} = 45{^\circ}\)
(ii) \(\sin\theta = \cos 25{^\circ}\ \rightarrow \cos{(90{^\circ} - \theta) =}\cos 25{^\circ}\)
\[90{^\circ} - \theta = 25{^\circ}\ \rightarrow \ 90{^\circ} - 25{^\circ} = \theta\ \rightarrow 65{^\circ} = \theta\ \rightarrow \ \theta = 65{^\circ}\]
There are certain trigonometric ratios of angles that are special because they occur often in the real world. These ratios are compiled in the table below:
\[\mathbf{\theta}\] | \[\mathbf{0{^\circ}}\] | \[\mathbf{30{^\circ}}\] | \[\mathbf{45{^\circ}}\] | \[\mathbf{60{^\circ}}\] | \[\mathbf{90{^\circ}}\] |
---|---|---|---|---|---|
\[\mathbf{\sin}\mathbf{\theta}\] | \[0\] | \[\frac{1}{2}\] | \[\frac{\sqrt{2}}{2}\] | \[\frac{\sqrt{3}}{2}\] | \[1\] |
\[\mathbf{\cos}\mathbf{\theta}\] | \[1\] | \[\frac{\sqrt{3}}{2}\] | \[\frac{\sqrt{2}}{2}\] | \[\frac{1}{2}\] | \[0\] |
\[\mathbf{\tan}\mathbf{\theta}\] | \[0\] | \[\frac{\sqrt{3}}{2}\] | \[1\] | \[\sqrt{3}\] | \[\infty\] |
\[90{^\circ} < \theta < 180{^\circ}\]
\[\sin{(180 - \theta)} = \sin\theta\] |
---|
\[\cos{(180 - \theta)} = - \cos\theta\]
\[\tan{(180 - \theta)} = - \tan\theta\]
\[\sin{180{^\circ}} = 0\]
\[\cos{180{^\circ}} = - 1\]
\[\tan{180{^\circ}} = 0\]
\[180{^\circ} < \theta < 270{^\circ}\]
\[\sin{(180 + \theta)} = - \sin\theta\] |
---|
\[\cos{(180 + \theta)} = - \cos\theta\]
\[\tan{(180 + \theta)} = \tan\theta\]
\[\sin{270{^\circ}} = - 1\]
\[\cos{270{^\circ}} = 0\]
\(\tan{270{^\circ}} = \infty\) (undefined)
\[270{^\circ} < \theta < 360{^\circ}\]
\[\sin{(360 - \theta)} = - \sin\theta\] |
---|
\[\cos{(360 - \theta)} = \cos\theta\]
\[\tan{(360 - \theta)} = - \tan\theta\]
\[\sin{360{^\circ}} = 0\]
\[\cos{360{^\circ}} = 1\]
\[\tan{360{^\circ}} = 0\]
Example: Without use of table, write down the value of each of the following in surd form:
-
\(\sin{135{^\circ}}\)
\(\cos{250{^\circ}}\)
\(\tan{330{^\circ}}\)
Solution
-
\(\sin{135{^\circ}} = \sin{(180 - 135)} = \sin{45{^\circ}} = \frac{\sqrt{2}}{2}\)
\(\cos{240{^\circ}} = \cos{(180 + 60)} = - \cos{60{^\circ}} = - \frac{1}{2}\)
\(\tan{330{^\circ}} = \tan{(360 - 330)} = - \tan{30{^\circ}} = - \frac{\sqrt{3}}{2}\)