Trigonometrical Pythagorean Identity - SS3 Mathematics Lesson Note
Given the triangle below:
By Pythagoras theorem, \(r^{2} = x^{2} + y^{2}\)
By trigonometrical ratios,
\(\cos\theta = \frac{x}{r}\); \(x = r\cos\theta\)
\(\sin\theta = \frac{y}{r}\); \(y = r\sin\theta\)
\[x^{2} = r^{2}\cos^{2}\theta\]
\[y^{2} = r^{2}\sin^{2}\theta\]
Combining Pythagorean Theorem and trigonometric ratios,
\[r^{2} = x^{2} + y^{2}\]
\[r^{2} = r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta\]
\[r^{2} = r^{2}(\cos^{2}\theta + \sin^{2}\theta)\]
\[\cos^{2}\theta + \sin^{2}\theta = \frac{r^{2}}{r^{2}}\]
\[\cos^{2}\theta + \sin^{2}\theta = 1\]
\(\mathbf{TRIGONOMETRICAL\ PYTHAGOREAN\ IDENTITY\ 1:\ }\mathbf{\cos}^{\mathbf{2}}\mathbf{\theta}\mathbf{+}\mathbf{\sin}^{\mathbf{2}}\mathbf{\theta}\mathbf{= 1}\), which holds true for all values of \(\mathbf{\theta}\).
Given \(\cos^{2}\theta + \sin^{2}\theta = 1\), dividing through by \(\cos^{2}\theta\)
\[\frac{\cos^{2}\theta}{\cos^{2}\theta} + \frac{\sin^{2}\theta}{\cos^{2}\theta} = \frac{1}{\cos^{2}\theta}\]
\[1 + \tan^{2}{\theta = \sec^{2}\theta}\]
\(\mathbf{TRIGONOMETRICAL\ PYTHAGOREAN\ IDENTITY\ 2:\ 1 +}\mathbf{\tan}^{\mathbf{2}}{\mathbf{\theta =}\mathbf{\sec}^{\mathbf{2}}\mathbf{\theta}}\), which holds true for all values of \(\mathbf{\theta}\).
Given \(\cos^{2}\theta + \sin^{2}\theta = 1\), dividing through by \(\sin^{2}\theta\)
\[\frac{\cos^{2}\theta}{\sin^{2}\theta} + \frac{\sin^{2}\theta}{\sin^{2}\theta} = \frac{1}{\sin^{2}\theta}\]
\[\cot^{2}{\theta + 1 = {cosec}^{2}\theta}\]
\(\mathbf{TRIGONOMETRICAL\ PYTHAGOREAN\ IDENTITY\ 3:\ }\mathbf{\cot}^{\mathbf{2}}{\mathbf{\theta + 1 =}\mathbf{cosec}^{\mathbf{2}}\mathbf{\theta}}\), which holds true for all values of \(\mathbf{\theta}\).
Example 1 If \(x = 2r\cos\theta\) and \(y = 2r\sin\theta\), find \(\sqrt{x^{2} + y^{2}}\)
Solution
\[\sqrt{x^{2} + y^{2}} = \ \sqrt{{(2r\cos\theta)}^{2} + {(2r\sin\theta)}^{2}}\]
\[= \ \sqrt{4r^{2}\cos^{2}\theta + 4r^{2}\sin^{2}\theta}\]
\[= \ \sqrt{4r^{2}{\ (cos}^{2}\theta + \sin^{2}\theta)}\]
\[= \sqrt{4r^{2}}.\sqrt{{\ (cos}^{2}\theta + \sin^{2}\theta)} = 2r.\sqrt{1} = 2r\]
Example 2 Find the value of \(\theta\) between \(0{^\circ}\) and \(360{^\circ}\) which satisfies the trigonometric equation \(\sin^{2}\theta + \sin\theta = 0\)
Solution
\[\sin^{2}\theta + \sin\theta = 0\]
Let \(P = \sin\theta\)
\[P^{2} + P = 0\]
Factorizing: \(P(P + 1) = 0\)
Thus, \(P = 0\) or \(P + 1 = 0\)
\(P = 0\) or \(P = - 1\)
\(\sin\theta = 0\) or \(\sin\theta = - 1\)
\[\theta = \sin^{- 1}0 = 0{^\circ}\ or\ 180{^\circ}\ or\ 360{^\circ}\]
\[\theta = \sin^{- 1}{( - 1)} = 270{^\circ}\]
Thus, \(\theta = 0{^\circ},\ 180{^\circ},270{^\circ}\ or\ 360{^\circ}\)