Courses » SS2 » SS2 Mathematics » Using Log and Antilog in Calculations - SS2 Mathematics Lesson Note

Using Log and Antilog in Calculations - SS2 Mathematics Lesson Note

Example 3 Evaluate the following logarithm:

  1. \(348.3 \times 5.427\)

  2. \(456.2 \div 98.76\)

  3. \(\frac{{(361.2)}^{3} \times 75.09}{{(11.32)}^{2} \times \sqrt{92.5}}\)

Solution

  1. \(348.3 \times 5.427\)

NUMBER LOGARITHM
\[348.3\] \[2.5420\]
\[5.427\] \[0.7346\]
\[348.3 \times 5.427\] \[2.5420 + 0.7346 = 3.2766\]

\[antilog\ 3.2766 = 1891\]

  1. \(456.2 \div 98.76\)

NUMBER LOGARITHM
\[456.2\] \[2.6592\]
\[98.76\] \[1.9946\]
\[348.3 \times 5.427\] \[2.6592 - 1.9946 = 0.6646\]

\[antilog\ 0.6646 = 4.619\]

  1. \(\frac{{(361.2)}^{3} \times 75.09}{{(11.32)}^{2} \times \sqrt{92.5}}\)

NUMBER LOGARITHM
\[{(361.2)}^{3}\] \[3 \times 2.5577\] \[7.6731\]    
\[75.09\]   \[1.8756\]    
      \[7.6731 + 1.8756 = 9.5487\]  
\[{(11.32)}^{2}\] \[2 \times 1.0539\] \[2.1078\]    
\[\sqrt{92.5}\] \[1.9661 \div 2\] \[0.9831\]    
      \[2.1078 + 0.9831 = 3.0909\]  
        \[9.5487 - 3.0909 = 6.4578\]

\[antilog\ 6.4578 = 2,869,000\]

Please share this, thanks:

Add a Comment

Notice: Please post responsibly.

No responses