Courses » SS2 » SS2 Mathematics » Using Log and Antilog in Calculations - SS2 Mathematics Lesson Note

Using Log and Antilog in Calculations - SS2 Mathematics Lesson Note

Example 3 Evaluate the following logarithm:

  1. \(348.3 \times 5.427\)

  • \(456.2 \div 98.76\)

  • \(\frac{{(361.2)}^{3} \times 75.09}{{(11.32)}^{2} \times \sqrt{92.5}}\)

  • Solution

    1. \(348.3 \times 5.427\)

    NUMBERLOGARITHM
    \[348.3\]\[2.5420\]
    \[5.427\]\[0.7346\]
    \[348.3 \times 5.427\]\[2.5420 + 0.7346 = 3.2766\]

    \[antilog\ 3.2766 = 1891\]

    1. \(456.2 \div 98.76\)

    NUMBERLOGARITHM
    \[456.2\]\[2.6592\]
    \[98.76\]\[1.9946\]
    \[348.3 \times 5.427\]\[2.6592 - 1.9946 = 0.6646\]

    \[antilog\ 0.6646 = 4.619\]

    1. \(\frac{{(361.2)}^{3} \times 75.09}{{(11.32)}^{2} \times \sqrt{92.5}}\)

    NUMBERLOGARITHM
    \[{(361.2)}^{3}\]\[3 \times 2.5577\]\[7.6731\]  
    \[75.09\] \[1.8756\]  
       \[7.6731 + 1.8756 = 9.5487\] 
    \[{(11.32)}^{2}\]\[2 \times 1.0539\]\[2.1078\]  
    \[\sqrt{92.5}\]\[1.9661 \div 2\]\[0.9831\]  
       \[2.1078 + 0.9831 = 3.0909\] 
        \[9.5487 - 3.0909 = 6.4578\]

    \[antilog\ 6.4578 = 2,869,000\]

    Recommended: Questions and Answers on Logarithm for SS2 Mathematics
    Please share this, thanks:

    Add a Comment

    Notice: Posting irresponsibily can get your account banned!

    No responses