Logarithm - SS2 Mathematics Past Questions and Answers - page 1

1

Find the logarithm of \(\sqrt[3]{462.3}\)

A

2.6649

B

0.3010

C

1.4645

D

0.8883

correct option: d

\(\log\sqrt[3]{462.3} = \ \frac{\log{462.3}}{3} = \ \frac{2.6649}{3} = \ 0.8883\) 

Users' Answers & Comments
2

Evaluate \(antilog\ 2.8837\) 

A

345

B

724

C

765

D

476

correct option: c

\(antilog\ 2.8837 = (characteristic = 2 + 1 = 3\ digits\ after\ the\ d.p.\ )\ \&\ \)

\(88\ under\ 3\ add\ difference\ 7 = \ 765.0\)

Users' Answers & Comments
3

Calculate \(\log{0.00843}\)

A

2.4567

B

\(\overline{2}.9069\)

C

\(\overline{3}.9258\)

D

1.0987

correct option: c

\(\log{0.00843} = \ \left( characteristic = 2 + 1 = 3 = \overline{3}\ \right)\ \&\ 84\ under\ 3 = \ \overline{3}.9258\)

Users' Answers & Comments
4

Find the logarithm of \(\frac{246.8 \times 3.496}{43.69}\)

A

19.74

B

18.89

C

13.74

D

15.77

correct option: a

\(\log\frac{246.8 \times 3.496}{43.69}\)

NUMBER LOGARITHM
\[246.8\] \[2.3923\]  
\[3.496\] \[0.5436\]  
    \[2.3923 + 0.5436 = 2.9359\]
\[43.69\] \[1.6404\]  
    \[2.9359 - 1.6404 = 1.2955\]

\[antilog\ 1.2955 = (characteristic = 1 + 1 = 2\ digits\ after\ the\ d.p.\ )\ \&\ \]

\(29\ under\ 5\ add\ difference\ 5 = \ 19.74\) 

Users' Answers & Comments
5

Using the logarithm table, find the square of \(91\)

A

8767

B

8279

C

7678

D

8267

correct option: b

\(\log 91^{2} = 2\log 91\ \)

\((characteristic = 2 - 1 = 1)\ \&\ 91\ under\ 0 = \ 1.9590\)

\(2 \times 1.9590 = \ 3.918\ \)

\(antilog\ 3.918 = 8279\)

Users' Answers & Comments
6

Calculate the square of \(128\) using the log table.

A

11.32

B

12.23

C

10.89

D

11.58

correct option: a

\(\log\sqrt[2]{128} = \frac{\log 128}{2} = \ \frac{2.1072}{2} = \ 1.0536\)

\(antilog\ 1.0536 = 11.32\) 

Users' Answers & Comments
7

Evaluate the following using the log table:

    1. \(30^{2}\)

    2. \(\sqrt[3]{1125}\)

a. \(30^{2}\)

Solution: \(\log 30^{2} = 2\log 30 = 2 \times 1.4771 = \ 2.9542\)

\[antilog\ 2.9542 = 899.9\ \approx 900\]

 

b. \(\sqrt[3]{1125}\)

Solution: \(\log\sqrt[3]{1125} = \frac{\log 1125}{3} = \frac{3.0512}{3} = \ 1.0171\)

\[antilog\ 1.0171 = 10.40\]

Users' Answers & Comments
8

Solve for \(x\) in the equation \(4^{x + 1} = 8^{x}\)

\(4^{x + 1} = 8^{x}\)

\(2^{2x + 2} = 2^{3x}\)

\(2x + 2 = 3x\)

\(2 = 3x - 2x\)

\(2 = x\)

\(x = 2\)

 

Users' Answers & Comments
Recommended: SS2 Mathematics Lessons
Please share this, thanks: