Score High in JAMB With EduPadi CBT App

Practice JAMB CBT, get instant results, and understand solutions in-depth with smart AI insights.

Learn more…

Factorization of Expressions - JSS3 Mathematics Lesson Note

I. Factorization of Expressions

1. Factorization of π‘Žπ‘₯+π‘Žπ‘¦

When you have an expression like π‘Žπ‘₯+π‘Žπ‘¦, you can factor out the common factor π‘Ž:

π‘Žπ‘₯+π‘Žπ‘¦=π‘Ž(π‘₯+𝑦)

Example:

2π‘₯+2𝑦=2(π‘₯+𝑦)

Β 

2. Factorization of 3π‘š+π‘π‘ž+3𝑝+π‘šπ‘

Here, we look for common factors or grouping:

3π‘š+π‘π‘ž+3𝑝+π‘šπ‘=3(π‘š+𝑝)+π‘π‘ž

Example:

3π‘š+2π‘π‘ž+3𝑝+π‘šπ‘=3(π‘š+𝑝)+2π‘π‘ž

Β 

3. Factorization of π‘Ž^2βˆ’π‘^2

This is a special case known as the difference of squares, which factors as:

π‘Ž^2βˆ’π‘^2=(π‘Žβˆ’π‘)(π‘Ž+𝑏)

Β 

Example:

9π‘₯^2βˆ’4=(3π‘₯βˆ’2)(3π‘₯+2)

Β 

4. Factorization of π‘Ž^2βˆ’2π‘Žπ‘βˆ’π‘^2

This expression can be factored using a pattern for a quadratic form:

π‘Ž^2βˆ’2π‘Žπ‘βˆ’π‘^2

=(π‘Žβˆ’π‘)^2βˆ’2π‘Žπ‘aΒ 

Β 

Example:π‘₯^2βˆ’2π‘₯π‘¦βˆ’π‘¦^2

=(π‘₯βˆ’π‘¦)2βˆ’2π‘₯𝑦

Chat with EduPadi AI about this lesson

Please share this, thanks!

Add a Comment

Notice: Please post responsibly.

No responses