2009 - JAMB Mathematics Past Questions and Answers - page 6

51
Simplify 7\(\frac{1}{12}\) - 4\(\frac{3}{2}\) + 2\(\frac{1}{2}\)
A
4
B
4\(\frac{1}{6}\)
C
4\(\frac{5}{6}\)
D
5\(\frac{1}{6}\)
correct option: c

7(\frac{1}{12}) - 4(\frac{3}{2}) + 2(\frac{1}{2})

Take care of the whole numbers

7 - 4 + 2 = 5

therefore, 5(\frac{1}{12}) - (\frac{3}{4}) + (\frac{1}{2})

LCM = 12

5(\frac{1 - 9 + 6}{12})

4(\frac{13 - 9 + 6}{12})

= 4(\frac{10}{12})

or = 4(\frac{5}{6})

Users' Answers & Comments
52
Evaluate \(\frac{81.81 + 99.44}{20.09 + 36.16}\) correct to 3 significant figures.
A
6.21
B
3.22
C
2.78
D
2.13
correct option: b

(\frac{81.81 + 99.44}{20.09 + 36.16})

= (\frac{181.25}{56.25})

= 3.22

Users' Answers & Comments
53
A student spent \(\frac{1}{5}\) of his allowances on books, \(\frac{1}{3}\) of the remainder on food and kept the rest for contingences. What fraction was kept?
A
\(\frac{7}{16}\)
B
\(\frac{8}{15}\)
C
\(\frac{2}{3}\)
D
\(\frac{4}{5}\)
correct option: b

Spent (\frac{1}{5}) on books remaining (\frac{4}{5})

spent (\frac{1}{3}) of (\frac{4}{5}) on food

(\frac{4}{5}) x (\frac{1}{3}) = (\frac{4}{15})

therefore, (\frac{4}{5}) - (\frac{4}{15})

= (\frac{12 - 4}{15})

= (\frac{8}{15})

Users' Answers & Comments
54
Solve 52(x - 1) x 5x + 1 = 0.04
A
\(\frac{1}{3}\)
B
\(\frac{1}{4}\)
C
-\(\frac{1}{5}\)
D
-\(\frac{1}{3}\)
correct option: d

52(x - 1) x 5x + 1 = 0.04

52x - 1 x 5x + 1 = (\frac{1}{25})

53x - 1 = 5-2

3x - 1= -2

3x = -1

therefore, x = -(\frac{1}{3})

Users' Answers & Comments
55
If log102 = 0.3010 and log107 = 0.8451, evaluate log10280.
A
3.4471
B
2.4471
C
1.4471
D
1.4071
correct option: b

log10(10 x 7 x 4)

log10280 = log1010 + log107 + 2 log 2

= 1 + 0.8451 + 2(0.3010)

= 2.4471

Users' Answers & Comments
56
Simplify \(\frac{5 + \sqrt{7}}{3 + \sqrt{7}}\)
A
17 - \(\sqrt{7}\)
B
4 - \(\sqrt{7}\)
C
15 - \(\sqrt{7}\)
D
7 - \(\sqrt{7}\)
correct option: b

(\frac{5 + \sqrt{7}}{3 + \sqrt{7}}) x (\frac{3 + \sqrt{7}}{3 + \sqrt{7}})

(\frac{15 - 5 \sqrt{7} + 3\sqrt{7} - 7}{9 - 3\sqrt{7} + 3\sqrt{7} - 7

= 4 - 2(\sqrt{7})

Users' Answers & Comments
57
If x = {n2 + 1 : n is positive integer and 1\(\leq\) n \(\leq\) 5}

y = {5n : n is positive integer and 1 \(\leq\) n \(\leq\) 5}, find x ∩ y.
A
{5, 10}
B
{5, 10, 15}
C
{2, 5 ,10}
D
{5, 10, 15, 20}
correct option: a

X : (n2 + 1) = 2, 5, 10, 17, 26

y : 5n = 5, 10, 15, 20, 25

x ∩ y = (5, 10)

Users' Answers & Comments
58
i. S∩T∩W = S

ii. S∪T∪W = W

ii. T∩W = S
If S\(\subset\)T\(\subset\)W. Which of the above statements are true?
A
i and ii
B
i and iii
C
ii and iii
D
i, ii and iii
correct option: b
Users' Answers & Comments
59
If P = \(\sqrt{\frac{rs^3}{t}}\), express r in terms of p, s and t.
A
\(\frac{p^2t}{s^3}\)
B
\(\frac{p^3t}{s^3}\)
C
\(\frac{p^3t}{s^2}\)
D
\(\frac{pt}{s^3}\)
correct option: a

P2 = (\frac{rs^3}{t})

P2t = rs3

r = (\frac{p^2t}{s^3})

Users' Answers & Comments
60
A polynomial in x whose roots are \(\frac{4}{3}\) and -\(\frac{2}{5}\) is
A
15x2 - 11x - 12
B
15x2 + 11x - 12
C
12x2 - x - 12
D
12x2 + 11x - 15
correct option: a

(3x - 4)(5x + 3)

= 15x2 - 11x - 12

Users' Answers & Comments
Please share this, thanks: