2009 - JAMB Mathematics Past Questions and Answers - page 9
x(4 - x)
4x - x2
(\frac{dy}{dx}) = 4 - 2x
(\frac{dy}{dx}) = 0
2x = 4
x = (\frac{4}{2})
= 2
Users' Answers & CommentsS = (t3 - t2 - t + 5)cm
(\frac{ds}{dt}) = 3t2 - 2t - 1
= (3t + 1)(t - 1)
t = -(\frac{1}{3}) or t = 1
Substitute value of t
s = (13 - 12 - 1 + 5)cm
= 4.0 cm
Users' Answers & CommentsThe distribution above shows the number of days a group of 260 students were absent from school in a particular term. How many students were absent for at least four days in the term
3x + 170 = 260
3x = 260 - 170
3x = 90 (\to) x = 30
therefore, 20 + 2x + 60 + 40
= 180
Users' Answers & Comments(\begin{array}{c|c} x & f & fx\ \hline 5 & 3 & 15\ 8 & 2 & 16 \ 6 & 4 & 24\ k & 1 & k\ & \sum f & \sum fx = 55 + k\end{array})
mean (\bar{x}) = (\frac{55 + k}{10})
= 5.7
k = 2
Users' Answers & Commentsdeviation x - (\bar{x})
x - 2 + 2x - 2 + (x + 1) - 2 + 3x - 2 = 0
x - 2 + 2x - 2 -2x - 2 + 3x - 2 = 0
= 4x - 8
4x = 8
x = (\frac{8}{4})
= 2
Users' Answers & Comments(\frac{n!}{n - r!}) = (\frac{9!}{9 - 3!})
= (\frac{9!}{6!})
= 9 x 8 x 7
= 502
Users' Answers & Comments(\frac{\begin{pmatrix} 8 \ 3 \end{pmatrix}}{\begin{pmatrix} 4 \ 1 \end{pmatrix}\begin{pmatrix} 4\ 1\end{pmatrix}})(Two boys and a girl) OR (\frac{\begin{pmatrix} 8 \ 3 \end{pmatrix}}{\begin{pmatrix} 4 \ 1 \end{pmatrix}\begin{pmatrix} 4\ 1\end{pmatrix}})(Two girls and a boy in the committee)
(\frac{336}{24}) or (\frac{336}{24})
14 + 14
= 28
Users' Answers & Commentsp(pass) = (\frac{2}{3})
p(fail) = (\frac{1}{3})
p(pass at 5 marks) = (\frac{1}{3}) x (\frac{1}{3}) x (\frac{1}{3})
= (\frac{1}{27})
Users' Answers & CommentsThe table above shows the distribution of marks of students in a test. Find the probability of passing the test if the pass mark is 5.