2009 - JAMB Mathematics Past Questions and Answers - page 8
132 = 52 + b2
169 = 25 + b2
b2 = 144
b = (\sqrt{144})
= 12 cm
Users' Answers & CommentsSurface area of a sphere = 4(\pi)r2
4(\pi)r2 = 154 cm2
(\pi)r2 = (\frac{154}{4})
= 38.5
(\pi)r2 = 38.5
r2 = 38.5 + (\frac{22}{7}) (\to) r2 = 38.5 x (\frac{7}{22})
r2 12.25 (\to) r = (\sqrt{12.25})
= 3.5 cm
Users' Answers & Comments(\frac{y_1 - y_o}{x_1 - x_o}) = m
(\frac{4 - p}{p + 1}) = (\frac{2}{3})
2p + 2 = 12 - 3p
5p = 10
p = (\frac{10}{5})
= 2
Users' Answers & CommentsApplying the formula
(x - a)2 + (y - b)2 = r2
(4 - 1)2 + (2 - r)2 = (3)2
(3)2 + (2 - r)2 = (3)2
9 + ( 4 - 4r + r2) = 9
13 - 4r + r2 = 9
r2 - 4r + 13 - 9 = 0
(r2 - 2r) - (2r + 4) = 0
r(r - 2) -2(r - 2) = 0
(r - 2) (r - 2)
r = 2 or -2
Users' Answers & Commentssin 45o - cos 30o
(\frac{1}{\sqrt{2}}) - (\frac{\sqrt{3}}{2})
= (\frac{2 - \sqrt{2} \times \sqrt{3}}{2\sqrt{2}}))
= (\frac{2 - \sqrt{6} \times \sqrt{2}}{2\sqrt{2} \sqrt{2}})
= (\frac{2\sqrt{2} - \sqrt{12}}{4})
= (\frac{2\sqrt{2} - 2\sqrt{3}}{4})
= (\frac{2(\sqrt{2} - \sqrt{3})}{4})
= (\frac{\sqrt{2} - \sqrt{3}}{2})
Users' Answers & CommentsTan 60o = (\frac{300}{x})
x Tan 60o = 300
x√3 = 300
x = (\frac{300}{\sqrt{3}}) x (\frac{\sqrt{3}}{\sqrt{3}})
x = (\frac{300\sqrt{3}}{3}) x 100(\sqrt{3})
Users' Answers & CommentsIf y = 3 cos 4x, (\frac{dy}{dx}) equals
(\frac{dy}{dx}) = 3(4 - sin 4x)
= -12 sin 4x
Users' Answers & Commentss = (2 + 3t)(5t - 4), find (\frac{dy}{dx}) when t = (\frac{4}{5}) sec
= 10t - 8 + 15t2 - 12t
(\frac{ds}{dt}) = 15t2 - 2t - 8
= 30t - 2 ; t = (\frac{4}{5})
= 30t - 2
= 30 x (\frac{4}{5}) - 2 (\to) 24 - 2
= 22 sec
Users' Answers & Comments