Question on: JAMB Mathematics - 2009
If s = (2 + 3t)(5t - 4), find \(\frac{dy}{dx}\) when t = \(\frac{4}{5}\) sec
A
0 units per sec.
B
15 units per seconds
C
22 units per seconds
D
26 units per seconds
Ask EduPadi AI for a detailed answer
Correct Option: C
s = (2 + 3t)(5t - 4), find \(\frac{dy}{dx}\) when t = \(\frac{4}{5}\) sec
= 10t - 8 + 15t2 - 12t
\(\frac{ds}{dt}\) = 15t2 - 2t - 8
= 30t - 2 ; t = \(\frac{4}{5}\)
= 30t - 2
= 30 x \(\frac{4}{5}\) - 2 \(\to\) 24 - 2
= 22 sec
= 10t - 8 + 15t2 - 12t
\(\frac{ds}{dt}\) = 15t2 - 2t - 8
= 30t - 2 ; t = \(\frac{4}{5}\)
= 30t - 2
= 30 x \(\frac{4}{5}\) - 2 \(\to\) 24 - 2
= 22 sec
Add your answer
Please share this, thanks!
No responses