2011 - JAMB Mathematics Past Questions and Answers - page 4
tan(\theta) = (\frac{3}{4})
from Pythagoras tippet, the hypotenus is T
i.e. 3, 4, 5.
then sin (\theta) = (\frac{3}{5}) and cos(\theta) = (\frac{4}{3})
cos(\theta) - sin(\theta)
(\frac{4}{5}) - (\frac{3}{5}) = (\frac{1}{5})
Users' Answers & Commentstan(\theta) = (\frac{100}{100}) = 1
(\theta) = tan-1(1) = 45o
The bearing of x from z is N45oE or 135o
Users' Answers & Comments(2x + 1)(3x + 1) IS
2x + 1 (\frac{d(3x + 1)}{d}) + (3x + 1) (\frac{d(2x + 1)}{d})
2x + 1 (3) + (3x + 1) (2)
6x + 3 + 6x + 2 = 12x + 5
Users' Answers & CommentsFind the mode of the above distribution.
Mode = L1 + ((\frac{D_1}{D_1 + D_2}))C
D1 = frequency of modal class - frequency of the class before it
D1 = 5 - 2 = 3
D2 = frequency of modal class - frequency of the class that offers it
D2 = 5 - 3 = 2
L1 = lower class boundary of the modal class
L1 = 5 - 5
C is the class width = 8 - 5.5 = 3
Mode = L1 + ((\frac{D_1}{D_1 + D_2}))C
= 5.5 + (\frac{3}{2 + 3})C
= 5.5 + (\frac{3}{5}) x 3
= 5.5 + (\frac{9}{5})
= 5.5 + 1.8
= 7.3 (\approx) = 7
Users' Answers & Commentsy = x3 + x2 - x + 1
(\frac{dy}{dx}) = (\frac{d(x^3)}{dx}) + (\frac{d(x^2)}{dx}) - (\frac{d(x)}{dx}) + (\frac{d(1)}{dx})
(\frac{dy}{dx}) = 3x2 + 2x - 1 = 0
(\frac{dy}{dx}) = 3x2 + 2x - 1
At the maximum point (\frac{dy}{dx}) = 0
3x2 + 2x - 1 = 0
(3x2 + 3x) - (x - 1) = 0
3x(x + 1) -1(x + 1) = 0
(3x - 1)(x + 1) = 0
therefore x = (\frac{1}{3}) or -1
For the maximum point
(\frac{d^2y}{dx^2}) < 0
(\frac{d^2y}{dx^2}) 6x + 2
when x = (\frac{1}{3})
(\frac{dx^2}{dx^2}) = 6((\frac{1}{3})) + 2
= 2 + 2 = 4
(\frac{d^2y}{dx^2}) > o which is the minimum point
when x = -1
(\frac{d^2y}{dx^2}) = 6(-1) + 2
= -6 + 2 = -4
-4 < 0
therefore, (\frac{d^2y}{dx^2}) < 0
the maximum point is -1
Users' Answers & Comments(\int^{1}_{0})(3 - 2x)dx
[3x - x2]o
[3(1) - (1)2] - [3(0) - (0)2]
(3 - 1) - (0 - 0) = 2 - 0
= 2
Users' Answers & Comments(\int^{1}_{0}) cos4 x dx
let u = 4x
(\frac{dy}{dx}) = 4
dx = (\frac{dy}{4})
(\int^{1}_{0})cos u. (\frac{dy}{4}) = (\frac{1}{4})(\int)cos u du
= (\frac{1}{4}) sin u + k
= (\frac{1}{4}) sin4x + k
Users' Answers & CommentsLet the numbers be a, a + 1, a + 2, a + 3
a + a + 1 + a + 2 + a + 3 = 34
4a = 34 - 6
4a = 28
a = (\frac{28}{4})
= 7
The least of these numbers is a = 7
Users' Answers & CommentsMedian = (\frac{\sum fx}{\sum f})
(\begin{array}{c|c}
No & 0 & 1 & 2 & 3 & 4 & 5 \ F & 1 & 4 & 3 & 8 & 2 & 5 \ fx & 0 & 4 & 6 & 24 & 8 & 25 \end{array})
(\sum fx) = 0 + 4 + 6 + 24 + 8 + 25 = 67
(\sum f) = 23
Median = (\frac{\sum fx}{\sum f}) = (\frac{67}{23}) = 2.913
= (\approx) 3
Range = 5 - 0 = 5
(3, 5)
Users' Answers & CommentsClass Interval & 3 - 5 & 6 - 8 & 9 - 11 \ \hline Frequency & 2 & 2 & 2 \end{array}\). Find the standard deviation of the above distribution.
(\begin{array}{c|c}Class Interval & 3 - 3 & 6 - 8 & 9 - 11 \ x & 4 & 7 & 10 \ f & 2 & 2 & 2 \ f - x & 8 & 14 & 20 \ |x - \bar{x}|^2 & 9 & 0 & 9 \ |x - \bar{x}|^2 & 18 0 & 18 \end{array})
(\bar{x}) = (\frac {\sum fx}{\sum f})
= (\frac {8 + 14 + 20}{2 + 2 + 2})
= (\frac{42}{6})
(\bar{x}) = 7
S.D = (\sqrt\frac{\sum f(x - \bar{x})^2}{\sum f})
= (\sqrt\frac{18 + 0 + 18}{6})
= (\sqrt\frac{36}{6})
= (\sqrt {6})
Users' Answers & Comments