2011 - JAMB Mathematics Past Questions and Answers - page 4

31
In a right angled triangle, if tan \(\theta\) = \(\frac{3}{4}\). What is cos\(\theta\) - sin\(\theta\)?
A
\(\frac{2}{3}\)
B
\(\frac{3}{5}\)
C
\(\frac{1}{5}\)
D
\(\frac{4}{5}\)
correct option: c
tan\(\theta\) = \(\frac{3}{4}\)

from Pythagoras tippet, the hypotenus is T

i.e. 3, 4, 5.

then sin \(\theta\) = \(\frac{3}{5}\) and cos\(\theta\) = \(\frac{4}{3}\)

cos\(\theta\) - sin\(\theta\)

\(\frac{4}{5}\) - \(\frac{3}{5}\) = \(\frac{1}{5}\)
Users' Answers & Comments
32
A man walks 100 m due West from a point X to Y, he then walks 100 m due North to a point Z. Find the bearing of X from Z.
A
195o
B
135o
C
225o
D
045o
correct option: b
tan\(\theta\) = \(\frac{100}{100}\) = 1

\(\theta\) = tan-1(1) = 45o

The bearing of x from z is N45oE or 135o
Users' Answers & Comments
33
The derivatives of (2x + 1)(3x + 1) is
A
12x + 1
B
6x + 5
C
6x + 1
D
12x + 5
correct option: d
(2x + 1)(3x + 1) IS

2x + 1 \(\frac{d(3x + 1)}{d}\) + (3x + 1) \(\frac{d(2x + 1)}{d}\)

2x + 1 (3) + (3x + 1) (2)

6x + 3 + 6x + 2 = 12x + 5
Users' Answers & Comments
34
\(\begin{array}{c|c} Class Intervals & 0 - 2 & 3 - 5 & 6 - 8 & 9 - 11 & \ \hline Frequency & 3 & 2 & 5 & 3 &\end{array}\)
Find the mode of the above distribution.
A
9
B
8
C
10
D
7
correct option: d
Mode = L1 + (\(\frac{D_1}{D_1 + D_2}\))C

D1 = frequency of modal class - frequency of the class before it

D1 = 5 - 2 = 3

D2 = frequency of modal class - frequency of the class that offers it

D2 = 5 - 3 = 2

L1 = lower class boundary of the modal class

L1 = 5 - 5

C is the class width = 8 - 5.5 = 3

Mode = L1 + (\(\frac{D_1}{D_1 + D_2}\))C

= 5.5 + \(\frac{3}{2 + 3}\)C

= 5.5 + \(\frac{3}{5}\) x 3

= 5.5 + \(\frac{9}{5}\)

= 5.5 + 1.8

= 7.3 \(\approx\) = 7
Users' Answers & Comments
35
Find the value of x at the minimum point of the curve y = x3 + x2 - x + 1
A
\(\frac{1}{3}\)
B
-\(\frac{1}{3}\)
C
1
D
-1
correct option: d
y = x3 + x2 - x + 1

\(\frac{dy}{dx}\) = \(\frac{d(x^3)}{dx}\) + \(\frac{d(x^2)}{dx}\) - \(\frac{d(x)}{dx}\) + \(\frac{d(1)}{dx}\)

\(\frac{dy}{dx}\) = 3x2 + 2x - 1 = 0

\(\frac{dy}{dx}\) = 3x2 + 2x - 1

At the maximum point \(\frac{dy}{dx}\) = 0

3x2 + 2x - 1 = 0

(3x2 + 3x) - (x - 1) = 0

3x(x + 1) -1(x + 1) = 0

(3x - 1)(x + 1) = 0

therefore x = \(\frac{1}{3}\) or -1

For the maximum point

\(\frac{d^2y}{dx^2}\) < 0

\(\frac{d^2y}{dx^2}\) 6x + 2

when x = \(\frac{1}{3}\)

\(\frac{dx^2}{dx^2}\) = 6(\(\frac{1}{3}\)) + 2

= 2 + 2 = 4

\(\frac{d^2y}{dx^2}\) > o which is the minimum point

when x = -1

\(\frac{d^2y}{dx^2}\) = 6(-1) + 2

= -6 + 2 = -4

-4 < 0

therefore, \(\frac{d^2y}{dx^2}\) < 0

the maximum point is -1
Users' Answers & Comments
36
Evaluate \(\int^{1}_{2}\)(3 - 2x)dx
A
33m
B
5
C
2
D
6
correct option: c
\(\int^{1}_{0}\)(3 - 2x)dx

[3x - x2]o

[3(1) - (1)2] - [3(0) - (0)2]

(3 - 1) - (0 - 0) = 2 - 0

= 2
Users' Answers & Comments
37
Find \(\int^{1}_{0}\) cos4 x dx
A
\(\frac{3}{4}\) sin 4x + k
B
-\(\frac{1}{4}\) sin 4x + k
C
-\(\frac{3}{4}\) sin 4x + k
D
\(\frac{1}{4}\) sin 4x + k
correct option: d
\(\int^{1}_{0}\) cos4 x dx

let u = 4x

\(\frac{dy}{dx}\) = 4

dx = \(\frac{dy}{4}\)

\(\int^{1}_{0}\)cos u. \(\frac{dy}{4}\) = \(\frac{1}{4}\)\(\int\)cos u du

= \(\frac{1}{4}\) sin u + k

= \(\frac{1}{4}\) sin4x + k
Users' Answers & Comments
38
The sum of four consecutive integers is 34. Find the least of these numbers
A
7
B
6
C
8
D
5
correct option: a
Let the numbers be a, a + 1, a + 2, a + 3

a + a + 1 + a + 2 + a + 3 = 34

4a = 34 - 6

4a = 28

a = \(\frac{28}{4}\)

= 7

The least of these numbers is a = 7
Users' Answers & Comments
39
\(\begin{array}{c|c} No & 0 & 1 & 2 & 3 & 4 & 5 \ \hline Frequency & 1 & 4 & 3 & 8 & 2 & 5 \end{array}\). From the table above, find the median and range of the data respectively.
A
(8,5)
B
(3, 5)
C
(5 , 8)
D
(5 , 3)
correct option: b
Median = \(\frac{\sum fx}{\sum f}\)

\(\begin{array}{c|c}
No & 0 & 1 & 2 & 3 & 4 & 5 \ F & 1 & 4 & 3 & 8 & 2 & 5 \ fx & 0 & 4 & 6 & 24 & 8 & 25 \end{array}\)

\(\sum fx\) = 0 + 4 + 6 + 24 + 8 + 25 = 67

\(\sum f\) = 23

Median = \(\frac{\sum fx}{\sum f}\) = \(\frac{67}{23}\) = 2.913

= \(\approx\) 3

Range = 5 - 0 = 5

(3, 5)
Users' Answers & Comments
40
\(\begin{array}{c|c}
Class Interval & 3 - 5 & 6 - 8 & 9 - 11 \ \hline Frequency & 2 & 2 & 2 \end{array}\). Find the standard deviation of the above distribution.
A
√5
B
√6
C
√7
D
√2
correct option: b
\(\begin{array}{c|c}Class Interval & 3 - 3 & 6 - 8 & 9 - 11 \ x & 4 & 7 & 10 \ f & 2 & 2 & 2 \ f - x & 8 & 14 & 20 \ |x - \bar{x}|^2 & 9 & 0 & 9 \ |x - \bar{x}|^2 & 18 0 & 18 \end{array}\)

\(\bar{x}\) = \(\frac {\sum fx}{\sum f}\)

= \(\frac {8 + 14 + 20}{2 + 2 + 2}\)

= \(\frac{42}{6}\)

\(\bar{x}\) = 7

S.D = \(\sqrt\frac{\sum f(x - \bar{x})^2}{\sum f}\)

= \(\sqrt\frac{18 + 0 + 18}{6}\)

= \(\sqrt\frac{36}{6}\)

= \(\sqrt {6}\)
Users' Answers & Comments
Please share this, thanks: