2011 - JAMB Mathematics Past Questions and Answers - page 3
(\begin{vmatrix} 2 & 3 \ 5 & 3x \end{vmatrix}) = (\begin{vmatrix} 4 & 1 \ 3 & 2x \end{vmatrix})
(2 x 3x) - (5 x 3) = (4 x 2x) - (3 x 1)
6x - 15 = 8x - 3
6x - 8x = 15 - 3
-2x = 12
x = (\frac{12}{-2})
= -6
Users' Answers & Comments(\begin{vmatrix} 4 & 2 & -1 \ 2 & 3 & -1 \ -1 & 1 & 3 \end{vmatrix})
4 (\begin{vmatrix} 3 & -1 \ 1 & 3 \end{vmatrix}) -2 (\begin{vmatrix} 2 & -1 \ -1 & 3\end{vmatrix}) -1 (\begin{vmatrix} 2 & 3 \ -1 & 1 \end{vmatrix})
4[(3 x 3) - (-1 x 1)] -2 [(2x 3) - (-1 x -1)] -1 [(2 x 1) - (-1 x 3)]
= 4[9 + 1] -2 [6 - 1] -1 [2 + 3]
= 4(10) - 2(5) - 1(5)
= 40 - 10 - 5
= 25
Users' Answers & CommentsN = [2 3]
N-1 = (\frac{adj N}{|N|})
adj N = (\begin{vmatrix} 4 & -3 \ -1 & 2 \end{vmatrix})
|N| = (2 x4) - (1 x 3)
= 8 - 3
=5
N-1 = (\frac {1}{5}) (\begin{vmatrix} 4 & -3 \ -1 & 2 \end{vmatrix})
Users' Answers & CommentsInterior angle = (n - 2)180
but, n = 12
= (12 -2)180
= 10 x 180
= 1800
let each interior angle = x
x = (\frac{(n - 2)180}{n})
x = (\frac{1800}{12})
= 150o
Users' Answers & CommentsPerimeter of circle = Perimeter of square
28cm = 4L
L = (\frac{28}{4}) = 7cm
Area of square = L2
= 72
= 49cm2
Users' Answers & CommentsFrom Pythagoras theorem
|OA|2 = |AN|2 + |ON|2
72 = |AN|2 + (5)2
49 = |AN|2 + 25
|AN|2 = 49 - 25 = 24
|AN| = (\sqrt {24})
= (\sqrt {4 \times 6})
= 2√6 cm
|AN| = |NB| (A line drawn from the centre of a circle to a chord, divides the chord into two equal parts)
|AN| + |NB| = |AB|
2√6 + 2√6 = |AB|
|AB| = 4√6 cm
Users' Answers & CommentsVolume of cube = L3
33 = 27cm3
volume of rectangular tank = L x B X h
= 3 x 4 x 5
= 60cm3
volume of H2O the tank can now hold
= volume of rectangular tank - volume of cube
= 60 - 27
= 33cm3
Users' Answers & CommentsP(x, y) Q(8, 6)
midpoint = (5, 8)
x + 8 = 5
(\frac{y + 6}{2}) = 8
x + 8 = 10
x = 10 - 8 = 2
y + 6 = 16
y + 16 - 6 = 10
therefore, P(2, 10)
Users' Answers & Comments2y = 5x + 4 (4, 2)
y = (\frac{5x}{2}) + 4 comparing with
y = mx + e
m = (\frac{5}{2})
Since they are perpendicular
m1m2 = -1
m2 = (\frac{-1}{m_1}) = -1
(\frac{5}{2}) = -1 x (\frac{2}{5})
The equator of the line is thus
y = mn + c (4, 2)
2 = -(\frac{2}{5})(4) + c
(\frac{2}{1}) + (\frac{8}{5}) = c
c = (\frac{18}{5})
(\frac{10 + 5}{5}) = c
y = -(\frac{2}{5})x + (\frac{18}{5})
5y = -2x + 18
or 5y + 2x - 18 = 0
Users' Answers & Comments