2011 - JAMB Mathematics Past Questions and Answers - page 2
11
Find the remainder when X3 - 2X2 + 3X - 3 is divided by X2 + 1
A
2X - 1
B
X + 3
C
2X + 1
D
X - 3
correct option: a
X2 + 1 \(\frac{X - 2}{\sqrt{X^3 - 2X^2 + 3n - 3}}\)
= \(\frac {- 6X^3 + n}{-2X^2 + 2X - 3}\)
= \(\frac{(-2X^2 - 2)}{2X - 1}\)
Remainder is 2X - 1
Users' Answers & Comments= \(\frac {- 6X^3 + n}{-2X^2 + 2X - 3}\)
= \(\frac{(-2X^2 - 2)}{2X - 1}\)
Remainder is 2X - 1
12
Factorize completely 9y2 - 16X2
A
(3y - 2x)(3y + 4x)
B
(3y + 4x)(3y + 4x)
C
(3y + 2x)(3y - 4x)
D
(3y - 4x)(3y + 4x)
13
Solve for x and y respectively in the simultaneous equations -2x - 5y = 3. x + 3y = 0
A
-3, -9
B
9, -3
C
-9,3
D
3, -9
correct option: c
-2x -5y = 3
x + 3y = 0
x = -3y
-2 (-3y) - 5y = -3
6y - 5y = 3
y = 3
but, x = -3y
x = -3(3)
x = -9
therefore, x = -9, y = 3
Users' Answers & Commentsx + 3y = 0
x = -3y
-2 (-3y) - 5y = -3
6y - 5y = 3
y = 3
but, x = -3y
x = -3(3)
x = -9
therefore, x = -9, y = 3
14
If x varies directly as square root of y and x = 81 when y = 9, Find x when y = 1\(\frac{7}{9}\)
A
20\(\frac{1}{4}\)
B
27
C
2\(\frac{1}{4}\)
D
36
correct option: d
x \(\alpha\sqrt y\)
x = k\(\sqrt y\)
81 = k\(\sqrt9\)
k = \(\frac{81}{3}\)
= 27
therefore, x = 27\(\sqrt y\)
y = 1\(\frac{7}{9}\) = \(\frac{16}{9}\)
x = 27 x \(\sqrt{\frac{16}{9}}\)
= 27 x \(\frac{4}{3}\)
dividing 27 by 3
= 9 x 4
= 36
Users' Answers & Commentsx = k\(\sqrt y\)
81 = k\(\sqrt9\)
k = \(\frac{81}{3}\)
= 27
therefore, x = 27\(\sqrt y\)
y = 1\(\frac{7}{9}\) = \(\frac{16}{9}\)
x = 27 x \(\sqrt{\frac{16}{9}}\)
= 27 x \(\frac{4}{3}\)
dividing 27 by 3
= 9 x 4
= 36
15
T varies inversely as the cube of R. When R = 3, T = \(\frac{2}{81}\), find T when R = 2
A
\(\frac{1}{18}\)
B
\(\frac{1}{12}\)
C
\(\frac{1}{24}\)
D
\(\frac{1}{6}\)
correct option: b
T \(\alpha \frac{1}{R^3}\)
T = \(\frac{k}{R^3}\)
k = TR3
= \(\frac{2}{81}\) x 33
= \(\frac{2}{81}\) x 27
dividing 81 by 27
k = \(\frac{2}{2}\)
therefore, T = \(\frac{2}{3}\) x \(\frac{1}{R^3}\)
When R = 2
T = \(\frac{2}{3}\) x \(\frac{1}{2^3}\) = \(\frac{2}{3}\) x \(\frac{1}{8}\)
= \(\frac{1}{12}\)
Users' Answers & CommentsT = \(\frac{k}{R^3}\)
k = TR3
= \(\frac{2}{81}\) x 33
= \(\frac{2}{81}\) x 27
dividing 81 by 27
k = \(\frac{2}{2}\)
therefore, T = \(\frac{2}{3}\) x \(\frac{1}{R^3}\)
When R = 2
T = \(\frac{2}{3}\) x \(\frac{1}{2^3}\) = \(\frac{2}{3}\) x \(\frac{1}{8}\)
= \(\frac{1}{12}\)
16
Solve the inequality -6(x + 3) \(\leq\) 4(x - 2)
A
x \(\leq\) 2
B
x \(\geq\) -1
C
x \(\geq\) -2
D
x \(\leq\) -1
correct option: b
-6(x + 3) \(\leq\) 4(x - 2)
-6(x +3) \(\leq\) 4(x - 2)
-6x -18 \(\leq\) 4x - 8
-18 + 8 \(\leq\) 4x +6x
-10x \(\leq\) 10x
10x \(\leq\) -10
x \(\leq\) 1
Users' Answers & Comments-6(x +3) \(\leq\) 4(x - 2)
-6x -18 \(\leq\) 4x - 8
-18 + 8 \(\leq\) 4x +6x
-10x \(\leq\) 10x
10x \(\leq\) -10
x \(\leq\) 1
17
Solve the inequality x2 + 2x > 15.
A
x < -3 or x > 5
B
-5 < x < 3
C
x < 3 or x > 5
D
x > 3 or x < -5
correct option: d
x2 + 2x > 15
x2 + 2x - 15 > 0
(x2 + 5x) - (3x - 15) > 0
x(x + 5) - 3(x + 5) >0
(x - 3)(x + 5) > 0
therefore, x = 3 or -5
then x < -5 or x > 3
i.e. x< 3 or x < -5
Users' Answers & Commentsx2 + 2x - 15 > 0
(x2 + 5x) - (3x - 15) > 0
x(x + 5) - 3(x + 5) >0
(x - 3)(x + 5) > 0
therefore, x = 3 or -5
then x < -5 or x > 3
i.e. x< 3 or x < -5
18
Find the sum of the first 18 terms of the series 3, 6, 9,..., 36.
A
505
B
513
C
433
D
635
correct option: b
3, 6, 9,..., 36.
a = 3, d = 3, i = 36, n = 18
Sn = \(\frac{n}{2}\) [2a + (n - 1)d
S18 = \(\frac{18}{2}\) [2 x 3 + (18 - 1)3]
= 9[6 + (17 x 3)]
= 9 [6 + 51] = 9(57)
= 513
Users' Answers & Commentsa = 3, d = 3, i = 36, n = 18
Sn = \(\frac{n}{2}\) [2a + (n - 1)d
S18 = \(\frac{18}{2}\) [2 x 3 + (18 - 1)3]
= 9[6 + (17 x 3)]
= 9 [6 + 51] = 9(57)
= 513
19
The seconds term of a geometric series is 4 while the fourth term is 16. Find the sum of the first five terms
A
60
B
62
C
54
D
64
correct option: b
T2 = 4, T4 = 16
Tx = arn-1
T2 = ar2-1 = 4 i.e. ar3 = 16, i.e. ar = 4
T4 = ar4-1
therefore, \(\frac{T_4}{T_r}\) = \(\frac{ar^3}{ar}\) = \(\frac{16}{4}\)
r2 = 4 and r = 2
but ar = 4
a = \(\frac{4}{r}\) = \(\frac{4}{2}\)
a = 2
Sn = \(\frac{a(r^n - 1)}{r - 1}\)
S5 = \(\frac{2(2^5 - 1)}{2 - 1}\)
= \(\frac{2(32 - 1)}{2 - 1}\)
= 2(31)
= 62
Users' Answers & CommentsTx = arn-1
T2 = ar2-1 = 4 i.e. ar3 = 16, i.e. ar = 4
T4 = ar4-1
therefore, \(\frac{T_4}{T_r}\) = \(\frac{ar^3}{ar}\) = \(\frac{16}{4}\)
r2 = 4 and r = 2
but ar = 4
a = \(\frac{4}{r}\) = \(\frac{4}{2}\)
a = 2
Sn = \(\frac{a(r^n - 1)}{r - 1}\)
S5 = \(\frac{2(2^5 - 1)}{2 - 1}\)
= \(\frac{2(32 - 1)}{2 - 1}\)
= 2(31)
= 62
20
A binary operation \(\oplus\) om real numbers is defined by x \(\oplus\) y = xy + x + y for two real numbers x and y. Find the value of 3 \(\oplus\) - \(\frac{2}{3}\).
A
- \(\frac{1}{2}\)
B
\(\frac{1}{3}\)
C
-1
D
2
correct option: b
N + Y = XY + X + Y
3 + -\(\frac{2}{3}\) = 3(- \(\frac{2}{3}\)) + 3 + (- \(\frac{2}{3}\))
= -2 + 3 -\(\frac{2}{3}\)
= \(\frac{1 - 2}{1 - 3}\)
= \(\frac{1}{3}\)
Users' Answers & Comments3 + -\(\frac{2}{3}\) = 3(- \(\frac{2}{3}\)) + 3 + (- \(\frac{2}{3}\))
= -2 + 3 -\(\frac{2}{3}\)
= \(\frac{1 - 2}{1 - 3}\)
= \(\frac{1}{3}\)