T varies inversely as the cube of R When R 3 T ... - JAMB Mathematics 2011 Question
T varies inversely as the cube of R. When R = 3, T = (\frac{2}{81}), find T when R = 2
A
\(\frac{1}{18}\)
B
\(\frac{1}{12}\)
C
\(\frac{1}{24}\)
D
\(\frac{1}{6}\)
Ask EduPadi AI...
Correct Option: B
T (\alpha \frac{1}{R^3})
T = (\frac{k}{R^3})
k = TR3
= (\frac{2}{81}) x 33
= (\frac{2}{81}) x 27
dividing 81 by 27
k = (\frac{2}{2})
therefore, T = (\frac{2}{3}) x (\frac{1}{R^3})
When R = 2
T = (\frac{2}{3}) x (\frac{1}{2^3}) = (\frac{2}{3}) x (\frac{1}{8})
= (\frac{1}{12})
Please share this, thanks:
#JAMB #JAMB
Add your answer
No responses