2019 - JAMB Mathematics Past Questions and Answers - page 5

41

Simplify \(\frac{0.0839 \times 6.381}{5.44}\) to 2 significant figures.

A
0.2809
B
2.51
C
3.5
D
0.098
correct option: d
Users' Answers & Comments
42

Find the value of x and y in the simultaneous equation: 3x + y = 21; xy = 30

A

x = 3 or 7, y = 12 or 8

B

x = 6 or 1, y = 11 or 5

C

x = 2 or 5, y = 15 or 6

D

x = 1 or 5, y = 10 or 7

correct option: c

3x + y = 21 ---- (i)

xy = 30 --------- (ii)

From (ii), \(y = \frac{30}{x}\).

Substitute the value of y in (i):

3x + \(\frac{30}{x}\) = 21

\(\implies\) 3x\(^2\) + 30 = 21x

3x\(^2\) - 21x + 30 = 0

3x\(^2\) - 15x - 6x + 30 = 0

3x(x - 5) - 6(x - 5) = 0

(3x - 6)(x - 5) = 0

3x - 6 = 0 \(\implies\) x = 2.

x - 5 = 0 \(\implies\) x = 5.

when x = 2, y = \(\frac{30}{2}\) = 15;

when x = 5, y = \(\frac{30}{5}\) = 6.

Users' Answers & Comments
43

Points X and Y are 20km North and 9km East of point O, respectively. What is the bearing of Y from X? Correct to the nearest degree.

A

24°

B

56°

C

127°

D

156°

correct option: d

 

\(\tan \theta = \frac{9}{20} = 0.45\)

\(\theta = \tan^{-1} (0.45) \)

= 24.23°

\(\therefore\) The bearing of Y from X = 180° - 24.23°

= 155.77°

= 156° approximately

Users' Answers & Comments
44

If \(P = (\frac{Q(R - T)}{15})^{\frac{1}{3}}\), make T the subject of the formula.

A
\(T = \frac{15R - Q}{P^3}\)
B
\(T = R - \frac{15P^3}{Q}\)
C
\(T = \frac{R - 15P^3}{Q}\)
D
\(T = \frac{R + P^3}{15Q}\)
correct option: b

\(P = (\frac{Q(R - T)}{15})^{\frac{1}{3}}\)

\(P^3 = \frac{Q(R - T)}{15}\)

\(Q(R - T) = 15P^3\)

\(R - T = \frac{15P^3}{Q}\)

\(T = R - \frac{15P^3}{Q}\)

Users' Answers & Comments
45

In the diagram above, O is the centre of the circle ABC, < ABO = 26° and < BOC = 130°. Calculate < AOC.

A
26°
B
13°
C
80°
D
102°
correct option: d

< BAC = \(\frac{130}{2}\) (angle subtended at the centre)

< BAC = 65°

Also, x = 26° (theorem)

y = 65° - 26° = 39°

< AOC = 180° - (39° + 39°)

= 102°

Users' Answers & Comments
46

Each of the interior angles of a regular polygon is 140°. Calculate the sum of all the interior angles of the polygon.

A

1080°

B

1260°

C

2160°

D

1800°

correct option: b

Given that each interior angle = 140°, 

each exterior angle = 180° - 140° = 40°

Number of sides of the polygon = \(\frac{360°}{40°}\) = 9 

Sum of the angles in the polygon = 140° x 9

= 1260°

Users' Answers & Comments
47

A man bought a car newly for ₦1,250,000. He had a crash with the car and later sold it at the rate of ₦1,085,000. What is the percentage gain or loss of the man?

A

43.7% loss

B

13.2% gain

C

13.2% loss

D

43.7% gain

correct option: c

The cost price of the car = N 1,250.00

The selling price of the car = N 1,085.00

Loss is the difference in the buying and selling price = N (1250 - 1085)

= N 165.00

% loss = \(\frac{165}{1250} \times 100%\)

= 13.2% loss

Users' Answers & Comments
48

If the volume of a frustrum is given as \(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\), find \(\frac{\mathrm d V}{\mathrm d R}\).

A
\(\frac{\pi h}{3} (2R + r)\)
B
\(2R + r + \frac{\pi h}{3}\)
C
\(\frac{\pi h}{3} (2R^2 + r + 2r)\)
D
\(\frac{2R^2}{3} \pi h\)
correct option: a

\(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\)

\(V = \frac{\pi R^2 h}{3} + \frac{\pi Rr h}{3} + \frac{\pi r^2 h}{3}\)

\(\frac{\mathrm d V}{\mathrm d R} = \frac{2 \pi R h}{3} + \frac{\pi r h}{3}\)

= \(\frac{\pi}{3} (2R + r)\)

Users' Answers & Comments
49

Express \((0.0439 \div 3.62)\) as a fraction.

A
\(\frac{21}{100}\)
B
\(\frac{21}{1000}\)
C
\(\frac{12}{1000}\)
D
\(\frac{12}{100}\)
correct option: c

\((0.0439 \div 3.62)\)

= 0.01213

\(\approxeq\) 0.012

= \(\frac{12}{1000}\)

Users' Answers & Comments
50

If \(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\), find the value of x.

A

x = -4

B

x = 2

C

x = -2

D

x = 4

correct option: a

\(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\)

\((5^2)^{(1 - x)} \times 5^{(x + 2)} \div (5^{-3})^x = (5^4)^{-1}\)

\(5^{2 - 2x} \times 5^{x + 2} \div 5^{-3x} = 5^{-4}\)

\(5^{(2 - 2x) + (x + 2) - (-3x)} = 5^{-4}\)

By equating the bases, we have

\(2 - 2x + x + 2 + 3x = -4\)

\(4 + 2x = -4 \implies 2x = -4 - 4\)

\(2x = -8\)

\(x = -4\)

Users' Answers & Comments
Please share this, thanks: