2019 - JAMB Mathematics Past Questions and Answers - page 1

1

Make q the subject of the formula in the equation \(\frac{mn}{a^2} - \frac{pq}{b^2} = 1\)

A
\(q = \frac{b^2(mn - a^2)}{a^2 p}\)
B
\(q = \frac{m^2 n - a^2}{p^2}\)
C
\(q = \frac{mn - 2b^2}{a^2}\)
D
\(q = \frac{b^2 (n^2 - ma^2)}{n}\)
correct option: a

\(\frac{mn}{a^2} - \frac{pq}{b^2} = 1\)

\(\frac{mn}{a^2} - 1 = \frac{pq}{b^2}\)

\(\frac{mn - a^2}{a^2} = \frac{pq}{b^2}\)

\(pq = \frac{b^2 (mn - a^2)}{a^2}\)

\(q = \frac{b^2(mn - a^2)}{a^2 p}\)

Users' Answers & Comments
2

The angle of elevation of the top of a tree from a point on the ground 60m away from the foot of the tree is 78°. Find the height of the tree correct to the nearest whole number.

A

148m

B

382m

C

282m

D

248m

correct option: c

 

\(\tan 78 = \frac{h}{60}\)

\(h = 60 \tan 78\)

\(h = 60 \times 4.705 = 282.27m\)

\(\approxeq\) 282m 

Users' Answers & Comments
3

A binary operation \(\otimes\) is defined by \(m \otimes n = mn + m - n\) on the set of real numbers, for all m, n \(\in\) R. Find the value of 3 \(\otimes\) (2 \(\otimes\) 4).

A
6
B
25
C
15
D
18
correct option: c

\(m \otimes n = mn + m - n\)

3 \(\otimes\) (2 \(\otimes\) 4)

2 \(\otimes\) 4 = 2(4) + 2 - 4 = 6

3 \(otimes\) 6 = 3(6) + 3 - 6  = 15

Users' Answers & Comments
4
Age in years 7 8 9 10 11
No of pupils 4 13 30 44 9

The table above shows the number of pupils in a class with respect to their ages. If a pie chart is constructed to represent the age, the angle corresponding to 8 years old is

A

48.6°

B

56.3°

C

46.8°

D

13°

correct option: c

Number of pupils = 4 + 13 + 30 + 44 + 9 = 100

Those of 8 - year olds = 13

On the pie chart, the angle represented by the 8-year olds = \(\frac{13}{100} \times 360°\)

= 46.8°

Users' Answers & Comments
5

In a class of 50 students, 40 students offered Physics and 30 offered Biology. How many offered both Physics and Biology?

A

42

B

20

C

70

D

54

correct option: b

n(Total) = 50

n(Physics) = 40

n(Biology) = 30

Let x = n(Physics and Biology)

Hence, 

n(Physics only) = 40 -x

n(Biology only) = 30 - x

40 - x + 30 - x + x = 50

70 - x = 50

x = 20

Users' Answers & Comments
6

Rationalize \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

A
\(-5 - 2\sqrt{6}\)
B
\(-5 + 3\sqrt{2}\)
C
\(5 - 2\sqrt{3}\)
D
\(5 + 2\sqrt{6}\)
correct option: a

\(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

= \((\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}})(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}})\)

= \(\frac{2 + \sqrt{6} + \sqrt{6} + 3}{2 - \sqrt{6} + \sqrt{6} - 3}\)

= \(\frac{5 + 2\sqrt{6}}{-1}\)

= \(- 5 - 2\sqrt{6}\)

Users' Answers & Comments
7

 

Find the length of the chord |AB| in the diagram shown above.

A

4.2 cm

B

4.3 cm

C

3.2 cm

D

3.4 cm

correct option: d

Length of chord, l = \(2r \sin (\frac{\theta}{2})\)

= \(2(3) \sin (\frac{68}{2})\)

= \(6 \sin 34\)

= \(6 \times 0.559\)

= 3.354 cm

l = \(\approxeq\)  3.4 cm

Users' Answers & Comments
8

Given \(\sin 58° = \cos p°\), find p.

A
48°
B
58°
C
32°
D
52°
correct option: c

\(\sin \theta = \cos (90 - \theta)\)

\(\sin \theta = \cos (90 - 58)\)

= \(\cos 32\)

Users' Answers & Comments
9

\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)

A
\(\frac{31}{50}\)
B
\(\frac{20}{31}\)
C
\(\frac{31}{20}\)
D
\(\frac{50}{31}\)
correct option: d

\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)

\(\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4}\)

= \(\frac{5}{6}\)

\(\frac{1}{4} + \frac{3}{5} - \frac{1}{3} = \frac{15 + 36 - 20}{60}\)

= \(\frac{31}{60}\)

\(\therefore \frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}} = \frac{5}{6} \div \frac{31}{60}\)

= \(\frac{5}{6} \times \frac{60}{31}\)

= \(\frac{50}{31}\)

Users' Answers & Comments
10

If \(6x^3 + 2x^2 - 5x + 1\) divides \(x^2 - x - 1\), find the remainder.

A

9x + 9

B

A. 2x + 6

C

B. 6x + 8

D

C. 5x - 3

correct option: a

Apply long division of polynomials. 

Users' Answers & Comments
Please share this, thanks: