2021 - JAMB Mathematics Past Questions and Answers - page 4

31

factorize m\(^3\) - m\(^2\) + 2m - 2

A

(m2 + 1)(m - 2)

B

(m - 1)(m + 1)(m + 2)

C

(m - 2)(m + 1)(m - 1)

D

(m2 + 2)(m - 1)

correct option: d

(m\(^2\) + 2) (m - 1)

Users' Answers & Comments
32

The angles of a quadrilateral are 5x-30, 4x+60, 60-x and 3x+61.find the smallest of these angles​

A

5x - 30

B

4x + 60

C

60 - x

D

3x + 61

correct option: c

Sum of the 4 angles of a quadrilateral = 360°

(5x-30) + (3x + 61) + (60-x) + (4x+ 60) = 360°

11x + 151 = 360°

11x = 360 - 151 = 209

x = 209/11 = 19°

Each angle:

5x - 30 =  65°

4x+ 60 = 136°

60 - x =41°

3x + 61 = 118°

The smallest of the angles is 41° 

Users' Answers & Comments
33

Find the n-th term of the sequence 2, 6, 12, 20...

A

4n - 2

B

2(3n - 1)

C

n2 + n

D

n2 + 3n + 2

correct option: c

Given the sequence 2, 6, 12, 20...

The nth term = n\(^2\) + n

Check: n = 1, u1 = 2

n = 2, u2 = 4 + 2 = 6

n = 3, u3 = 9 + 3 = 12

n = 4, u4 = 16 + 4 = 20

Users' Answers & Comments
34

If the binary operation \(\ast\) is defined by m \(\ast\) n = mn + m + n for any real number m and n, find the identity of the elements under this operation

A

e = 1

B

e = -1

C

e = -2

D

e = 0

correct option: d

Identity(e) : a \(\ast\) e = a

m \(\ast\) e = m...(i)

m \(\ast\) e = me + m + e

m \(\ast\) e = m 

m = me + m + e

m - m = e(m + 1)

e = \(\frac{0}{m + 1}\)

e = 0

Users' Answers & Comments
35

Factorize completely 81a\(^4\) - 16b\(^4\)

A

(3a + 2b)(2a - 3b)(9a2 + 4b2)

B

(3a - 2b)(2a - 3b)(4a2 - 9b2)

C

(3a - 2b)(3a + 2b)(9a2 + 4b2)

D

(6a - 2b)(8a - 3b)(4a3 - 9b2)

correct option: c

81a\(^4\) - 16b\(^4\) = (9a\(^2\))\(^2\) - (4b\(^2\))\(^2\)

= (9a\(^2\) + 4b\(^2\))(9a\(^2\) - 4b\(^2\))

9a\(^2\) - 4b\(^2\) = (3a - 2b)(3a + 2b)

Users' Answers & Comments
36

Find x if log\(_9\)x = 1.5

A

27

B

15

C

3.5

D

32

correct option: a

Given log\(_9\)x = 1.5,

9\(^{1.5}\) = x

9^\(\frac{3}{2}\) = x

(√9)\(^3\) = 3
x = 27

Users' Answers & Comments
37

List all integers satisfying the inequality in -2 < 2x-6 < 4 

A

2,3,4 and 5

B

2,3

C

2,5

D

3,4

correct option: d

-2 < 2x - 6   AND  2x - 6 < 4

-2 + 6 <2x  AND  2x < 4 + 6

4 <2x  AND  2x < 10

: 2 <x  AND x <5

2 < x < 5 

Hence,

3, 4

Users' Answers & Comments
38

Give that X is due east point of Y on a coast. Z is another point on the coast but 6.0km due south of Y. If the distance ZX is 12km, calculate the bearing of Z from X

A

240°

B

150°

C

60°

D

270°

correct option: a

Sinθ = \(\frac{6}{12}\)

Sinθ = \(\frac{1}{2}\)

θ =  Sin\(^0.5\)
θ = 30°

Bearing of Z from X, (270 - 30)° = 240°

Users' Answers & Comments
39

A group of market women sell at least one of yam, plantain and maize. 12 of them sell maize, 10 sell yam and 14 sell plantain. 5 sell plantain and maize, 4 sell yam and maize, 2 sell yam and plantain only while 3 sell all the three items. How many women are in the group?

A

25

B

19

C

18

D

17

correct option: a

Let the three items be M, Y and P

n{M ∩ Y} only = 4-3 = 1
n{M ∩ P) only = 5-3 = 2
n{ Y ∩ P} only = 2
n{M} only = 12-(1+3+2) = 6
n{Y} only = 10-(1+2+3) = 4
n{P} only = 14-(2+3+2) = 7
n{M∩P∩Y} = 3

The number of women in the group = 6+4+7+(1+2+2+3) 

= 25

Users' Answers & Comments
40

If (x + 2) and (x - 1) are factors of the expression \(Lx + 2kx^{2} + 24\), find the values of L and k.

A

l = -12, k = -6

B

l = -2 , k = 1

C

l = -2 , k = -1

D

l = 0, k = 1

correct option: a

Given (x + 2) and (x - 1), i.e. x = -2 or +1

At x = -2

L(-2) + 2k(-2)\(^2\) + 24 = 0

f(-2) = -2L + 8k = -24...(i)

At x = 1

L(1) + 2k(1) + 24 = 0


f(1):L + 2k = -24...(ii)

Substitute L = -24 - 2k in equations (i)

-2(-24 - 2k) + 8k = -24

+48 + 4k + 8k = -24

12k = -24 - 48 = -72

k = \(frac{-72}{12}\)

k = -6

Where L = -24 - 2k

L = -24 - 2(-6)

L = -24 + 12

L = -12

K = -6, L = -12

 

Users' Answers & Comments
Please share this, thanks: