Differential Calculus (Differentiation) - SS3 Mathematics Past Questions and Answers - page 1
Find from first principle, the differential coefficient of \(y = x^{3}\)
\(\3x^{2}\)
\(\12x^{3}\)
\({\ x}^{3}\)
2x
\(y = x^{3}\) i.e., \(f(x) = x^{3}\)
If \(x\) changes by \(\mathrm{\Delta}x\) then \(f(x + \mathrm{\Delta}x) = (x + \mathrm{\Delta}x)^{3}\)
\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{f(x\ + \mathrm{\Delta}x) - f(x)}{\mathrm{\Delta}x}\]
\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{(x + \mathrm{\Delta}x)^{3} - x^{3}}{\mathrm{\Delta}x}\]
\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{(x + \mathrm{\Delta}x)^{3} - x^{3}}{\mathrm{\Delta}x}\]
\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{x^{3} + 3x^{2}\mathrm{\Delta}x + 3x(\mathrm{\Delta}x)^{2} + (\mathrm{\Delta}x)^{3} - x^{3}}{\mathrm{\Delta}x}\]
\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}\frac{3x^{2}\mathrm{\Delta}x + 3x(\mathrm{\Delta}x)^{2} + (\mathrm{\Delta}x)^{3}}{\mathrm{\Delta}x}\]
\[\frac{dy}{dx} = \lim_{\mathrm{\Delta}x \rightarrow 0}{3x^{2} + 3x\mathrm{\Delta}x + (\mathrm{\Delta}x)^{2}}\]
\(\mathrm{\Delta}x\) vanishes as \(\mathrm{\Delta}x \rightarrow 0\)
\(\therefore\frac{dy}{dx} = 3x^{2}\)
Find the differential coefficient of \(y = x^{5} + 4x^{3} - 5x + 4\)
\(5x^{4} + 12x^{2} - 5\)
\(\5x^{4} + 12x^{2} - 5x\)
\(\5x^{4} + 6x^{2} - 5\)
\(\x^{4} + 12x^{2} - 5\)
\[y = x^{5} + 4x^{3} - 5x + 4\]
\[\frac{dy}{dx} = \frac{d}{dx}(x^{5} + 4x^{3} - 5x + 4)\]
\[\frac{dy}{dx} = \frac{d}{dx}\left( x^{5} \right) + \frac{d}{dx}\left( 4x^{3} \right) - \frac{d}{dx}(5x) + \frac{d}{dx}(4)\]
\(\frac{dy}{dx} = 5x^{4} + 12x^{2} - 5 + 0 = 5x^{4} + 12x^{2} - 5\)
Find the derivative of the function \(y = (2x + 1)(x^{2} + 2)\)
\(3x^{2} + x + 2\)
\(\2\left\lbrack 3x^{2} + x + 2 \right\rbrack\)
\(\x^{2} + x + 2\)
\(\frac{1}{2}\lbrack x^{2} + x + 3\rbrack\)
\[y = (2x + 1)(x^{2} + 2)\]
\[\frac{dy}{dx} = \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}\]
\[u = (2x + 1),\ \ \ \ \ \ \ v = (x^{2} + 2)\]
\[\frac{du}{dx} = 2,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{dv}{dx} = 2x\]
\[\frac{dy}{dx} = (2x + 1)2x + \left( x^{2} + 2 \right)2\]
\[\frac{dy}{dx} = 4x^{2} + 2x + 2x^{2} + 4\]
\(\frac{dy}{dx} = 6x^{2} + 2x + 4 = 2\lbrack 3x^{2} + x + 2\rbrack\)
Find the derivative of the function \(y = \frac{1}{x}\)
\(- \frac{1}{x^{2}}\)
\(\frac{1}{x^{2}}\)
\(\frac{1}{2x}\)
\(- 2x^{2}\)
\[\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\]
\[u = 1,\ \ \ \ \ \ \ \ \ \ \ \ v = x\]
\[\frac{du}{dx} = 0,\ \ \ \ \ \ \ \ \ \frac{dv}{dx} = 1\]
\(\frac{dy}{dx} = \frac{x(0) - 1(1)}{x^{2}} = - \frac{1}{x^{2}}\)
Find the derivative of the function \(y = \left( 3x^{2} + 2 \right)^{2}\)
\(\6x\left( x^{2} + 3 \right)\)
12x
\(\ 3x^{2} + 2\)
\(\12x(3x^{2} + 2)\)
Let \(u = 3x^{2} + 2\), \(\frac{du}{dx} = 6x\)
\(y = u^{2}\), \(\frac{dy}{du} = 2u\)
\[\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}\]
\[\frac{dy}{du} = 2u \times 6x = 2(3x^{2} + 2) \times 6x\]
\(= 12x(3x^{2} + 2)\)
Find the differential coefficient of the following functions:
(a) \(y = 3x\ \left( x^{2} + 1 \right)\sin x\)
(b) \(y = \frac{1 + \tan x}{\sin x}\)
(c) \(y = \log_{e}{(1 + x)}\)
(a). \(y = 3x\ \left( x^{2} + 1 \right)\sin x\)
Resolving the first two functions, \(3x\) and \((x^{2} + 1)\) by product rule, then the third \(\sin x\)
Let \(u = 3x\) and \(v = (x^{2} + 1)\)
\[u\frac{dv}{dx} + v\frac{du}{dx}\]
\[= 3x\ (2x) + (x^{2} + 1)3\]
\[= 6x^{2} + 3x^{2} + 3\]
\[= 9x^{2} + 3\]
Resolving \(u = 9x^{2} + 3\)and \(v = \sin x\)
\[u\frac{dv}{dx} + v\frac{du}{dx}\]
\[= 9x^{2} + 3\left( \cos x \right) + \sin x(18x)\]
\[\frac{dy}{dx} = 9x^{2} + 3\left( \cos x \right) + 18x\sin x\]
\[\frac{dy}{dx} = 3\lbrack 3x^{2} + \cos x + 9x\sin x\rbrack\]
(b). \(y = \frac{1 + \tan x}{\sin x}\)
\[\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\]
\(u = 1 + \tan x\), \(\frac{du}{dx} = \sec^{2}x\)
\(v = \sin x\), \(\frac{dv}{dx} = \cos x\)
\[\frac{dy}{dx} = \frac{\sin x\sec^{2}x - \left( 1 + \tan x \right)\cos x}{\sin^{2}x}\]
\[\frac{dy}{dx} = \frac{\sin x\sec^{2}x - {(cos}x + \sin x)}{\sin^{2}x}\]
\[\frac{dy}{dx} = \frac{\sin x\sec^{2}x - \cos x - \sin x}{\sin^{2}x}\]
(c). \(y = \log_{e}{(1 + x)}\)
Let \(u = 1 + x\), \(\frac{du}{dx} = 1\)
\(y = \log_{e}u\) \(\frac{dy}{du} = \frac{1}{u}\)
\(\frac{dy}{dx} = \frac{dy}{du}.\frac{du}{dx} = \frac{1}{u}.(1) = \frac{1}{u} = \frac{1}{1 + x}\)