Question on: SS2 Mathematics - Trigonometric Ratios II

Alice starts a \(3km\) walk from a point \(P\) on a bearing \(023{^\circ}\). She then walks \(4km\) on a bearing \(113{^\circ}\) to \(Q\). What is the distance of \(Q\) from \(P\)?

View related lesson
Ask EduPadi AI for a detailed answer

\(\angle O = 23{^\circ} + (180{^\circ} - 113{^\circ})\)

\[\angle O = 23{^\circ} + 67{^\circ}\]

\[\angle O = 90{^\circ}\]

Using the cosine rule,

\[o^{2} = p^{2} + q^{2} - 2pq\cos O\]

\[o^{2} = 4^{2} + 3^{2} - 2(4)(3)\cos 90\]

\[o^{2} = 16 + 9 - 0\]

\[o^{2} = 25\]

\[o = \sqrt{25} = \ 5km\]

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses