An operation is defined on the set of real numb... - JAMB Mathematics 2005 Question
An operation * is defined on the set of real numbers by a * b = ab + 2(a + b + 1). find the identity elements
A
2
B
1
C
-1
D
-2
correct option: c
a * b = ab + 2(a + b + 1)
let e be the identity element
∴ a * e = e * b = a
∴ a * e
ae + 2(a + e + 1) = a
ae + 2a + 2e + 2 = a
ae + 2e = a - 2a = 2
(a + 2)e = -a - 2
e = -(a-2) / (a+2)
e = -(a+2) / (a+2)
e = -1
let e be the identity element
∴ a * e = e * b = a
∴ a * e
ae + 2(a + e + 1) = a
ae + 2a + 2e + 2 = a
ae + 2e = a - 2a = 2
(a + 2)e = -a - 2
e = -(a-2) / (a+2)
e = -(a+2) / (a+2)
e = -1
Please share this, thanks:
Add your answer
No responses