Question on: JAMB Physics - 2017
Calculate the angle of minimum deviation of a 60o prism of a refractive index [sin-10.75 = 49o]
For a refractive index () = (\frac{\sin\frac{1}{2} (A + D)}{\sin\frac{1}{2}A})
D = angle of minimum deviation
A = refractive angle of the prism
1.5 = (\frac{\sin\frac{1}{2} (60 + D)}{\sin\frac{1}{2} \times 60})
1.5 = (\frac{\sin\frac{1}{2} (60 + D)}{\sin 30})
Sin (\frac{1}{2}) (60 + D) = 1.5 * Sin 30
Sin (\frac{1}{2}) (60 + D) = 0.75
(\frac{1}{2}) (60 + D) = Sin-1 (0.75)
but Sin-1 (0.75) = 49o
(\frac{1}{2}) (60 + D) = 49
60 + D = 2 * 49 = 98o
D = 98o - 60o
D = 38o
Add your answer
Please share this, thanks!
No responses