Question on: JAMB Physics - 2017

Calculate the angle of minimum deviation of a 60o prism of a refractive index [sin-10.75 = 49o]

A
38.00o
B
19.47o
C
16.25o
D
49o
Ask EduPadi AI for a detailed answer
Correct Option: A

For a refractive index () = (\frac{\sin\frac{1}{2} (A + D)}{\sin\frac{1}{2}A})

D = angle of minimum deviation

A = refractive angle of the prism

1.5 = (\frac{\sin\frac{1}{2} (60 + D)}{\sin\frac{1}{2} \times 60})

1.5 = (\frac{\sin\frac{1}{2} (60 + D)}{\sin 30})

Sin (\frac{1}{2}) (60 + D) = 1.5 * Sin 30

Sin (\frac{1}{2}) (60 + D) = 0.75

(\frac{1}{2}) (60 + D) = Sin-1 (0.75)

but Sin-1 (0.75) = 49o

(\frac{1}{2}) (60 + D) = 49

60 + D = 2 * 49 = 98o

D = 98o - 60o

D = 38o

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses