Calculate the mid point of the line segment y -... - JAMB Mathematics 2014 Question
Calculate the mid point of the line segment y - 4x + 3 = 0, which lies between the x-axis and y-axis.
A
\(\begin{pmatrix} 3 & -3 \ 8 & 2 \end{pmatrix}\)
B
\(\begin{pmatrix} 3 & 3 \ 8 & 2 \end{pmatrix}\)
C
\(\begin{pmatrix} -2 & 2 \ 2 & 2 \end{pmatrix}\)
D
\(\begin{pmatrix} -2 & 3 \ 3 & 2 \end{pmatrix}\)
correct option: a
y - 4x + 3 = 0
When y = 0, 0 - 4x + 3 = 0
Then -4x = -3
x = 3/4
So the line cuts the x-axis at point (3/4, 0).
When x = 0, y - 4(0) + 3 = 0
Then y + 3 = 0
y = -3
So the line cuts the y-axis at the point (0, 3)
Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;
\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)
\([\frac{1}{2}(\frac{3}{4} + 0), \frac{1}{2}(0 + -3)]\)
\([\frac{1}{2}(\frac{3}{4}), \frac{1}{2}(-3)]\)
\([\frac{3}{8}, \frac{-3}{2}]\)
When y = 0, 0 - 4x + 3 = 0
Then -4x = -3
x = 3/4
So the line cuts the x-axis at point (3/4, 0).
When x = 0, y - 4(0) + 3 = 0
Then y + 3 = 0
y = -3
So the line cuts the y-axis at the point (0, 3)
Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;
\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)
\([\frac{1}{2}(\frac{3}{4} + 0), \frac{1}{2}(0 + -3)]\)
\([\frac{1}{2}(\frac{3}{4}), \frac{1}{2}(-3)]\)
\([\frac{3}{8}, \frac{-3}{2}]\)
Please share this, thanks:
Add your answer
No responses