Differentiate frac x cosx with respect to x - JAMB Mathematics 1998 Question
Differentiate \(\frac{x}{cosx}\) with respect to x
A
1 + x sec x tan x
B
1 + sec2 x
C
cos x + x tan x
D
x sec x tan x + secx
correct option: d
let y = \(\frac{x}{cosx}\) = x sec x
y = u(x) v (x0
\(\frac{dy}{dx}\) = U\(\frac{dy}{dx}\) + V\(\frac{du}{dx}\)
dy x [secx tanx] + secx
x = x secx tanx + secx
y = u(x) v (x0
\(\frac{dy}{dx}\) = U\(\frac{dy}{dx}\) + V\(\frac{du}{dx}\)
dy x [secx tanx] + secx
x = x secx tanx + secx
Please share this, thanks:
Add your answer
No responses