Home » Classroom » JAMB Mathematics 2023 Question

Differentiate the function y sqrt 3 x 2 2x - x 2 - JAMB Mathematics 2023 Question

 

Differentiate the function y = \(\sqrt[3]{x^2(2x - x^2)}\)

A

\(\frac {dy}{dx} = \frac {10x^{5/3}}{3} - \frac {8x^{2/3}}{3}\)

B

\(\frac {dy}{dx} = \frac {10x^{5/3}}{3} - \frac {8x^{5/3}}{3}\)

C

\(\frac {dy}{dx} = \frac {10x^{2/3}}{3} - \frac {8x^{2/3}}{3}\)

D

None

correct option: d

The differentiation of the given function \(y = \sqrt[3]{x^2(2x - x^2)}\) involves the product and chain rules. Let's break down the solution:

\[y = \sqrt[3]{x^2(2x - x^2)}\]

We can rewrite this as:

\[y = x^{2/3}(2x - x^2)^{1/3}\]

Now, applying the product rule \((uv)' = u'v + uv'\) and chain rule \((g(h(x)))' = g'(h(x)) \cdot h'(x)\), we get:

\[y' = \frac{2}{3}x^{-1/3}(2x - x^2)^{1/3} + x^{2/3} \cdot \frac{1}{3}(2x - x^2)^{-2/3}(2 - 2x)\]

Simplify the expression:

\[y' = \frac{2}{3x^{1/3}}(2x - x^2)^{1/3} - \frac{2x^{2/3}(2 - 2x)}{3(2x - x^2)^{2/3}}\]

Now, let's factor out common terms:

\[y' = \frac{2x^{2/3}}{3(2x - x^2)^{2/3}} \left(3 - 3x - x^{1/3}(2x - x^2)^{1/3}\right)\]

The simplified expression for the derivative is:

\[y' = \frac{2x^{2/3}}{3(2x - x^2)^{2/3}} \left(3 - 3x - x^{1/3}(2x - x^2)^{1/3}\right)\]

Comparing with the given options, it seems there might be a mistake in the assumed correct option. The correct differentiation seems to be:

\[y' = \frac{2x^{2/3}}{3(2x - x^2)^{2/3}} \left(3 - x(2x - x^2)^{1/3}\right)\]

 

Please share this, thanks:

Add your answer

Notice: Posting irresponsibily can get your account banned!

No responses