Question on: WAEC Mathematics - 2001

Evaluate \(\frac{x^2 + x - 2}{2x^2 + x -3}\) when x = -1

A
-2
B
-1
C
\(-\frac{1}{2}\)
D
1
Ask EduPadi AI for a detailed answer
Correct Option: D

\(\frac{x^2 + x - 2}{2x^2 + x - 3}\)

= \(\frac{x^2 + 2x - x - 2}{2x^2 + 3x - 2x - 3}\)

= \(\frac{x(x + 2) - 1(x + 2)}{x(2x + 3) - 1(2x + 3)}\)

= \(\frac{(x - 1)(x + 2)}{(x - 1)(2x + 3)}\)

= \(\frac{x + 2}{2x + 3}\)

At x = -1, 

= \(\frac{-1 + 2}{2(-1) + 3}\)

= \(\frac{1}{1}\)

= 1

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses