Evaluate int 2x 3 frac 1 2 delta x - JAMB Mathematics 2014 Question
Evaluate \(\int (2x + 3)^{\frac{1}{2}} \delta x\)
A
\(\frac{1}{12} (2x + 3)^6 + k\)
B
\(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\)
C
\(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
D
\(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\)
correct option: c
\(\int (2x + 3)^{\frac{1}{2}} \delta x\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
Please share this, thanks:
Add your answer
No responses