Factorize 16x 4 - y 4 - JAMB Mathematics 2023 Question
Factorize: \(16x^4 - y^4\)
A
\((2x - y)(2x + y)(4x^2 + y^2)\)
B
\((2x + y)(2x + y)(4x^2 + y^2)\)
C
\((2x - y)(2x - y)(4x^2 + y^2)\)
D
\((2x - y)(2x + y)(4x^2 - y^2)\)
correct option: a
To factorize the given expression \(16x^4 - y^4\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\).
Let \(a = 2x^2\) and \(b = y^2\). Then, \(a^2 - b^2 = (2x^2 - y^2)(2x^2 + y^2)\).
Now, \(2x^2 - y^2\) is itself a difference of squares, where \(c = 2x\) and \(d = y\). Applying the difference of squares formula again, we get \(2x^2 - y^2 = (2x - y)(2x + y)\).
Substitute this back into the original expression:
\[16x^4 - y^4 = (2x - y)(2x + y)(2x^2 + y^2)\]
So, the correct factorization is:
\[16x^4 - y^4 = (2x - y)(2x + y)(2x^2 + y^2)\]
Please share this, thanks:
Add your answer
No responses