Find T in terms of K Q and S if S 2r piQT K - JAMB Mathematics 1995 Question
Find T in terms of K, Q and S if S = 2r(\(\piQT + K)
A
\(\frac{S^2}{2 \pi r^2Q} - \frac{k}{Q}\)
B
\(\frac{S^2}{2 \pi r^2Q}\) - k
C
\(\frac{S^2}{4 \pi r^2Q} - \frac{k}{Q}\)
D
\(\frac{s^2}{4 \pi r^2Q}\)
correct option: b
\(\frac{s^2}{4r^2}\) = QT\(\pi\) + KT
\(\frac{s^2}{4r^2}\) - k\(\pi\) = QT\(\pi\)
T = \(\frac{s^2}{4Q\pi r^2}\) - k
\(\frac{s^2}{4r^2}\) - k\(\pi\) = QT\(\pi\)
T = \(\frac{s^2}{4Q\pi r^2}\) - k
Please share this, thanks:
Add your answer
No responses