Find the matrix A A begin bmatrix 0 amp 1 2 amp... - JAMB Mathematics 2023 Question
Find the matrix A
A \(\begin {bmatrix} 0 & 1\\2 & -1 \end {bmatrix}\) = \(\begin {bmatrix} 2 & -1\\1 & 0 \end {bmatrix}\)
\(\begin {bmatrix} 2 & 1\\-^1/_2 & -^1/_2 \end {bmatrix}\)
\(\begin {bmatrix} 0 & 1\\^1/_2 & ^1/_2 \end {bmatrix}\)
\(\begin {bmatrix} 2 & 1\\0 & -1 \end {bmatrix}\)
\(\begin {bmatrix} 2 & 1\\^1/_2 & -2 \end {bmatrix}\)
To find matrix \(A\), we need to solve for \(A\) in the equation \(A \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\).
Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\). Then the equation becomes:
\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}
\]
Now, perform the matrix multiplication:
\[
\begin{bmatrix} a(0) + b(2) & a(1) + b(-1) \\ c(0) + d(2) & c(1) + d(-1) \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}
\]
Simplify the matrix equation:
\[
\begin{bmatrix} 2b & a - b \\ 2d & c - d \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}
\]
Now, equate corresponding elements:
1. \(2b = 2\) \(\Rightarrow b = 1\)
2. \(a - b = -1\) \(\Rightarrow a - 1 = -1\) \(\Rightarrow a = 0\)
3. \(2d = 1\) \(\Rightarrow d = \frac{1}{2}\)
4. \(c - d = 0\) \(\Rightarrow c - \frac{1}{2} = 0\) \(\Rightarrow c = \frac{1}{2}\)
Therefore, the matrix \(A\) is:
\[
A = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}
\]
The correct option is \(\begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}\)
Add your answer
No responses